AI赋能铁轨运维智能检测引领铁路安全新时代,基于嵌入式端超轻量级模型LeYOLO全系列【n/s/m/l】参数模型开发构建铁路轨道场景下铁轨吻合偏移检测识别系统

在当今社会,火车作为大众出行的主流方式,其便捷性和高效性深受人们青睐。铁轨,作为火车行驶的基石,其铺设与维护的标准之严格,直接关系到列车运行的安全与稳定。然而,随着时间的推移以及自然环境的影响,铁轨难免会出现沉降、偏移等问题,这些潜在的安全隐患若不及时发现和处理,将对铁路交通构成严重威胁。传统上,铁轨的运维检修依赖于人工巡检,不仅成本高昂,且难以实现全天候监控,更难以应对日益增长的铁路网络维护需求。在此背景下,人工智能(AI)技术的引入,为铁轨运维带来了革命性的变革。

传统运维的挑战
传统的铁轨运维主要依赖于工程师团队,他们利用肉眼观察和特定的测量设备进行现场检查。这种方法不仅效率低下,而且在面对复杂多变的地理环境和气候条件时,往往力不从心。尤其是在偏远地区或恶劣天气下,人工巡检的难度和成本进一步增加,导致运维工作的及时性和有效性大打折扣。此外,随着铁路网络的迅速扩展,需要维护的铁轨里程数急剧增加,传统的人工巡检模式已难以满足日益增长的运维需求。

AI技术的崛起
随着人工智能技术的快速发展和广泛应用,越来越多的传统行业开始探索AI赋能的可能性。在铁路运维领域,AI模型的引入为解决传统运维难题提供了新思路。通过遍布铁道的线杆和电网,可以方便地安装摄像头设备,实现对铁轨状态的实时监控。这些摄像头采集的图像数据,经过专业团队的标注处理后,成为训练AI模型的重要素材。

基于这些真实场景数据开发的铁轨吻合自动检测模型,能够精准识别铁轨的异常情况,如沉降、偏移等。将这些模型部署在边缘端算力盒子中,即可实现对摄像头传入的视频流数据进行实时检测识别。这种全天候的计算能力,使得运维团队能够及时发现并预警潜在的安全隐患,大大缩短了响应时间,提高了运维效率。

智能运维的优势
AI赋能的铁轨运维模式,相较于传统方式,具有以下显著优势:

全天候监控:不受时间、天气等自然条件限制,实现24小时不间断监控,确保铁轨状态的实时掌握。
高效精准:AI模型能够快速准确地识别铁轨异常,减少误报和漏报,提高运维工作的针对性和有效性。
降低成本:自动化检测减少了人工巡检的频率和强度,降低了人力成本,同时提高了运维效率。
快速响应:一旦发现异常,预警信息可立即传达至运维平台,便于快速部署工程师团队进行定点精准作业。

本文就是在这样的思考背景下想要尝试从实验的角度开发构建铁路轨道场景下的铁轨偏移智能化检测系统,在前面的系列博文中我们已经进行了相应的开发实践,感兴趣的话可以自行移步阅读即可:

《AI赋能铁轨运维智能检测引领铁路安全新时代,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建铁路轨道场景下铁轨吻合偏移检测识别系统》

《AI赋能铁轨运维智能检测引领铁路安全新时代,基于YOLOv7全系列【tiny/l/x】参数模型开发构建铁路轨道场景下铁轨吻合偏移检测识别系统》

《AI赋能铁轨运维智能检测引领铁路安全新时代,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建铁路轨道场景下铁轨吻合偏移检测识别系统》

《AI赋能铁轨运维智能检测引领铁路安全新时代,基于YOLOv9全系列【yolov9/t/s/m/c/e】参数模型开发构建铁路轨道场景下铁轨吻合偏移检测识别系统》

《AI赋能铁轨运维智能检测引领铁路安全新时代,基于YOLOv10全系列【n/s/m/b/l/x】参数模型开发构建铁路轨道场景下铁轨吻合偏移检测识别系统》

本文正是在这样的思考背景下想要从实验性质的角度出发,尝试应用嵌入式端超轻量级的LeYOLO系列的参数模型来开发构建轻量级的检测识别分析系统,首先看下实例效果:

接下来看下实例数据:

深度神经网络中的计算效率对于目标检测至关重要,尤其是在新模型将速度优先于高效计算(FLOP)的情况下。这种演变在某种程度上已经落后于嵌入式和面向移动的AI对象检测应用程序。这里重点讨论了基于FLOP的高效目标检测计算的神经网络结构的设计选择,并提出了几种优化方法来提高基于YLO的模型的效率。
首先,介绍了一种基于反向瓶颈和信息瓶颈原理的有效主干扩展方法。其次,提出了快速金字塔结构网络(FPAN),旨在促进快速多尺度特征共享,同时减少计算资源。最后提出了一个解耦的网络中网络(DNiN)检测头的设计,以提供快速而轻量级的计算分类和回归任务。
在这些优化的基础上,利用更高效的主干,为对象检测和以YOLO为中心的模型(称为LeYOLO)提供了一种新的缩放范例。在各种资源限制下始终优于现有模型,实现了前所未有的准确性和失败率。值得注意的是,LeYOLO Small在COCO val上仅以4.5次失败(G)获得了38.2%的竞争性mAP分数,与最新最先进的YOLOv9微小模型相比,计算量减少了42%,同时实现了类似的精度。我们的新型模型系列实现了以前未达到的浮点精度比,提供了从超低神经网络配置(<1 GFLOP)到高效但要求苛刻的目标检测设置(>4 GFLOP)的可扩展性,对于0.66、1.47、2.53、4.51、5.8和8.4浮点(G),具有25.2、31.3、35.2、38.2、39.3和41 mAP。

一共提供了n、s、m和l四款不同参数量级的模型。

这里我们保持完全相同的实验参数设置来进行四款模型的开发训练,等待训练完成之后我们来整体进行各项指标的对比分析。

【Precision曲线】
精确率曲线(Precision Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【loss曲线】

深度学习的训练过程中,loss函数用于衡量模型预测结果与实际标签之间的差异。loss曲线则是通过记录每个epoch(或者迭代步数)的loss值,并将其以图形化的方式展现出来,以便我们更好地理解和分析模型的训练过程。

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

整体对比分析来看:不难发现四款不同参数量级的模型最终达到了较为相似的结果,没有拉开非常大的差距,其中:n系列的模型效果最差,s和m系列的模型效果相近,l系列的模型效果最优,这里综合参数量考虑我们最终选定了l系列的模型来作为线上的推理计算模型,因为本身l和m的参数量相差并不大的。

接下来看下l系列模型的详细情况。

【离线推理实例】

【Batch实例】

【F1值曲线】

【Precision曲线】

【PR曲线】

【Recall曲线】

【训练可视化】

AI技术在铁轨运维领域的应用,标志着铁路安全管理向智能化、自动化迈出了重要一步。它不仅解决了传统运维模式面临的诸多挑战,更为铁路交通的安全、高效运行提供了有力保障。随着技术的不断进步和应用的深入,智能运维将成为铁路行业转型升级的重要驱动力,引领铁路安全进入新时代。未来,我们有理由相信,AI技术将在更多领域展现其巨大潜力,为人类社会的可持续发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值