【现代数字传输】OFDM的原理讲解和MATLAB实现

简介


 现代数字传输技术有许多种,例如MSK , GMSK , OFDM, 扩频技术,但是其中OFDM成功地应用于各种重要的通信系统,例如,DAB与DVB,3G/4G与LTE无线通信系统等。所以本篇文章将着重讲解OFDM流程和原理,以及对多径衰落信道下OFDM的MATLAB实现。

目录

简介

一、前置知识

1.1 正弦函数的正交性

1.2 DFT和IDFT

1.3 信号的频域形状

二、ODFM思想(Orthogonal Frequency Division Multiplexing)

2.1 利用正交的复载波传输信息(正交用在哪?)

2.2 OFDM的原理图

2.2.1 串并变换

2.2.3 将符号调制到正交的子载波

2.2.3 Multiplexing/复用(信号合成)

2.2.4 接收端进行Demultiplexing(信号分解)

2.2.5 接收端进行相干解调

2.2 利用IFFT和FFT进行调制和解调

2.3 循环前缀 (Cyclic Prefix)

2.3.1 ISI 从哪来

2.3.2 如何消除ISI

三、OFDM的MATLAB仿真

3.1 仿真的系统(理想信道估计)

3.2 代码


一、前置知识


OFDM是一个相比起基本数字调制来讲更为复杂的数字调制技术,我们学习它之前需要足够的前置知识。

1.1 正弦函数的正交性

这是OFDM技术能实现的非常关键的一个理论,推导如下:

 通过举例可以看到,正弦函数具有正交性,这样的好处将在接收端进行体现,因为你可以用积分手段去 过滤掉与某一频率的载波正交的其他载波(因为积分为0)。

1.2 DFT和IDFT

这里直接给出公式:

 记住DFT和IDFT的公式模样,这会是解答为什么OFDM采用IFFT调制信号的关键!

1.3 信号的频域形状

最开始的时候,我对于OFDM的频谱长成这样是非常疑惑的:

 为啥明明交叠了也是正交的呢?为什么是这么多拱门状的频域响应呢?我们不慌忙推导正交性,首先关注为什么信号的频率响应是拱门状。

其实是这样的,我们无论进行什么数字调制手段,我们调制后的符号都是 0 到 ts 的码元对吧。我们打个比方,BPSK调制,那么有下面的推导证明:

 

 从上推导我们得到以下很重要的性质:

1. 有限制码元周期为 Ts 且频率分量为 f_0 的调制符号,其频谱就是 拱门状的频率响应进行 f_0 的平移。

 2. 其主瓣的宽度就是 2 \times \frac{1}{T_s} , 集中在  [f_0-\frac{1}{T_s},f_0+\frac{1}{T_s}]

二、ODFM思想(Orthogonal Frequency Division Multiplexing)


这里将较为细致的讲解ODFM调制的原理,但是更多的细节会在做MATLAB的时候展现出来。

2.1 利用正交的复载波传输信息(正交用在哪?)

我们在前置知识中介绍了,复载波在满足一定频率间隔情况下是正交的,这种正交性带来了解调的方便。试想,我在比如说 f_1 的复载波上传输信号 s_1(t), 在频率为 f_2 的复载波上传输信号s_2(t)。在发送端中,我将两个调制后的复载波相加,一起发送,那么我在接收端,是不是只要分别乘以 f_1 的复载波和 f_2 的复载波再积分即可只保留相对应的信号了? 下面这幅图会很清晰的表现出来:

 那么试想,我用很多个这样的正交复载波去分别传送信息,在接收端都能通过这种手段解调,那不就很方便吗!(后面也将说明其很大程度地节约了频谱资源࿰

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值