基于python使用TPE搜索算法调整机器学习超参数

在日常机器学习调参过程中,我们常常使用网格搜索、随机搜索和基于GP的SMBO(Sequential Model-Based Optimization)搜索。然而还有一些其他方法也很好用,比如笔者今天所介绍的基于TPE的SMBO(Sequential Model-Based Optimization)搜索。

TPE搜索简要介绍:

TPE(Tree-structured Parzen Estimators)搜索最核心的思想: 根据贝叶斯公式:P(Y|X) =[ P(X|Y) X P(Y) ] / P(X),基于GP的SMBO的思想是估计P(Y|X), 而基于TPE的SMBO的思想是估计P(X|Y)。

TPE搜索的流程如下,如下图所示:

  1. 对f(x)抽样
  2. 分成small f(x) 和 big f(x)
  3. 估计 small f(x) 的分布 L(x),估计 big f(x)的分布 G(x)
  4. 对L(x) 进行抽样
  5. 计算EI,找到最大的EI
  6. 根据EI更新f(x)
  7. 重复 2 ~ 7

TPE搜索调参实例:

下面介绍如何

  • 2
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 我不是很了解麻雀算法,但我可以提供一些有关python代码实现超参数优化机器学习模型的参考资料: 1. Scikit-learn库中的GridSearchCV函数:https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html 2. scikit-optimize库中的BayesianOptimization函数:https://scikit-optimize.github.io/#skopt.BayesSearchCV 3. Hyperopt库中的fmin函数:https://github.com/hyperopt/hyperopt/wiki/FMin ### 回答2: 麻雀算法(Sparrow algorithm)是一种优化算法,通过模拟麻雀觅食找到最优解。在机器学习中,可以使用麻雀算法来优化模型的超参数选择。 首先,我们需要定义一个适应度函数,用于评估模型的性能。例如,可以使用交叉验证准确率作为适应度函数。 接下来,我们可以使用以下代码实现麻雀算法优化机器学习模型的超参数: ```python import random # 定义适应度函数 def fitness(params): # 使用给定的超参数训练和评估模型,返回交叉验证准确率 # 这里假设使用params来训练模型,然后返回准确率 return accuracy def sparrow_algorithm(): # 初始化参数空间 params = initialize_params() best_fitness = fitness(params) # 初始化最佳适应度为当前适应度 best_params = params # 将当前参数设置为最佳参数 # 定义麻雀算法的迭代次数和麻雀群体大小 max_iterations = 100 num_sparrows = 10 for _ in range(max_iterations): for _ in range(num_sparrows): # 随机调整超参数,生成新的参数 new_params = adjust_params(params) new_fitness = fitness(new_params) # 判断新的适应度是否比最佳适应度更好 if new_fitness > best_fitness: best_fitness = new_fitness best_params = new_params # 更新参数空间为最佳参数 params = best_params return best_params # 初始化参数空间 def initialize_params(): # 返回一个初始化的超参数空间,例如一组初始的学习率、隐藏层大小等超参数 return params # 随机调整超参数 def adjust_params(params): # 在超参数空间内随机调整超参数的值,生成新的参数 return new_params # 测试麻雀算法 best_params = sparrow_algorithm() print("Best parameters: ", best_params) ``` 以上代码演示了如何使用麻雀算法优化机器学习模型的超参数选择。在实际应用中,您需要根据具体的机器学习模型和超参数空间进行适当的调整。 ### 回答3: 麻雀算法是一种群体智能算法,可以用于优化机器学习模型的超参数。下面是用Python代码实现麻雀算法优化机器学习模型的超参数的示例: ```python import random # 定义麻雀类 class Sparrow: def __init__(self, position): self.position = position self.velocity = [0] * len(position) self.best_position = position self.best_fitness = float('inf') def update_velocity(self, global_best_position, omega, alpha, beta): for i in range(len(self.position)): r1 = random.random() r2 = random.random() cognitive_velocity = alpha * r1 * (self.best_position[i] - self.position[i]) social_velocity = beta * r2 * (global_best_position[i] - self.position[i]) self.velocity[i] = omega * self.velocity[i] + cognitive_velocity + social_velocity def update_position(self, lower_bound, upper_bound): for i in range(len(self.position)): self.position[i] += self.velocity[i] # 边界处理 if self.position[i] < lower_bound: self.position[i] = lower_bound if self.position[i] > upper_bound: self.position[i] = upper_bound def calculate_fitness(self, fitness_function): fitness = fitness_function(self.position) if fitness < self.best_fitness: self.best_fitness = fitness self.best_position = self.position # 定义麻雀算法类 class SparrowAlgorithm: def __init__(self, num_sparrows, num_iterations, fitness_function, lower_bound, upper_bound, omega, alpha, beta): self.num_sparrows = num_sparrows self.num_iterations = num_iterations self.fitness_function = fitness_function self.lower_bound = lower_bound self.upper_bound = upper_bound self.omega = omega self.alpha = alpha self.beta = beta self.sparrows = [] self.global_best_position = None self.global_best_fitness = float('inf') def optimize(self): # 初始化麻雀群体 for _ in range(self.num_sparrows): position = [random.uniform(self.lower_bound, self.upper_bound) for _ in range(len(self.lower_bound))] sparrow = Sparrow(position) self.sparrows.append(sparrow) # 迭代优化 for _ in range(self.num_iterations): for sparrow in self.sparrows: sparrow.calculate_fitness(self.fitness_function) if sparrow.best_fitness < self.global_best_fitness: self.global_best_fitness = sparrow.best_fitness self.global_best_position = sparrow.best_position for sparrow in self.sparrows: sparrow.update_velocity(self.global_best_position, self.omega, self.alpha, self.beta) sparrow.update_position(self.lower_bound, self.upper_bound) return self.global_best_position ``` 你可以根据实际需求,自定义目标函数(fitness_function)以及其他参数,例如种群数量(num_sparrows)、迭代次数(num_iterations)、位置范围(lower_bound和upper_bound)等。在optimize方法返回的结果中,即可获得优化后的超参数值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值