pytorch中RNN Layer

  • 必选参数 input_size,指定输入序列中单个样本的尺寸大小,例如可能用一个 1000 长度的向量表示一个单词,则 input_size=1000
  • 必选参数 hidden_size,指的是隐藏层中输出特征的大小
  • 必选参数 num_layers,指的是纵向的隐藏层个数,一般设置为 1~10,default=1

 

接下来看一个2层的RNN模型

在解释 ht 和 out 之前要先理解一个概念 —— 时间戳,时间戳是针左右而不是上下,什么意思呢,就是上图是一个两层的 RNN,假设这两层的 RNN 右边分别又各接一层,那这样的左右结构就是时间戳,基于此,给出 ht 和 out 的定义:

  • ht:最后一个时间戳上面所有的 memory 状态
  • out:所有时间戳上的最后一个 memory 状态

如下所示的代码片段

import torch
import torch.nn as nn

rnn = nn.RNN(input_size=100, hidden_size=20, num_l
### 使用PyTorch构建RNN神经网络 为了使用PyTorch构建循环神经网络(RNN),可以遵循以下结构化的方法。首先,导入必要的库来支持模型建设、数据加载以及评估等功能[^1]。 ```python import torch from torch import nn import torch.nn.functional as F ``` 定义一个简单的RNN类继承自`nn.Module`,这是所有神经网络模块的基础类。在这个例子中,初始化函数设置了输入维度小、隐藏层单元数量以及其他参数;前向传播方法指定了数据流经网络的方式: ```python class SimpleRNN(nn.Module): def __init__(input_dim, hidden_dim, layer_dim, output_dim): super(SimpleRNN, self).__init__() # 隐藏层数量 self.hidden_dim = hidden_dim # 层的数量 self.layer_dim = layer_dim # RNN层 self.rnn = nn.RNN(input_dim, hidden_dim, layer_dim, batch_first=True, nonlinearity='relu') # 全连接层 self.fc = nn.Linear(hidden_dim, output_dim) def forward(x): # 初始化隐状态 h0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).requires_grad_() # 前向传递至RNN out, hn = rnn(x, h0.detach()) # 只取最后一个时刻的状态作为全连接层的输入 out = self.fc(out[:, -1, :]) return out ``` 创建随机数据集用于测试目的,这可以通过实现`__getitem__()`和`__len__()`方法来自定义数据集类完成[^2]。 最后一步是实例化上述定义好的RNN对象并训练它,在实际应用中还需要准备真实的数据集来进行有效的学习过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值