零空间定义
线性方程组 Ax=0 的所有解x的集合称为矩阵A的零空间
零空间求解
设
A=⎡⎣⎢1 2 32462682810⎤⎦⎥
求
x=⎡⎣⎢⎢⎢x1x2x3x4⎤⎦⎥⎥⎥
消元
⎡⎣⎢1 2 32462682810⎤⎦⎥→⎡⎣⎢1 0 0200222244⎤⎦⎥→⎡⎣⎢1 0 0200220240⎤⎦⎥
最终的矩阵称为U,其中每行的第一个非0的数称为主元,主元的数量称为矩阵的秩,主元所在的列称为主列,其余列称为自由列
矩阵U的第二列与第四列为自由列,这意味着所求的解中 x2,x4 是任意的
列出此时所求的方程组
指定 x2=1,x4=0 ,可解得 x1=−2,x3=0
获得一个解 ⎡⎣⎢⎢⎢−2 1 0 0⎤⎦⎥⎥⎥ ,显然这个解的任意倍数也是方程的解
于是我们在4维空间中找到了一条直线,这条直线同时属于矩阵的零空间
零空间并不仅仅只有这一条直线
指定 x2=0,x4=1 ,可解得 x1=2,x3=−2
获得一个新解 ⎡⎣⎢⎢⎢2 0 −2 1⎤⎦⎥⎥⎥
上面通过对自由变量的指定得到了两个特解
⎡⎣⎢⎢⎢−2 1 0 0⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢2 0 −2 1⎤⎦⎥⎥⎥
两个特解的所有线性组合就是整个零空间,需要的特解的数量等于自由变量的数量
上面的消元结果可进一步简化成简化行阶梯形式(主列除了主元全是0,且主元为1)
⎡⎣⎢1 0 0200220240⎤⎦⎥→⎡⎣⎢1 0 0200010−220⎤⎦⎥
将简化行阶梯形式的矩阵记作R,列出R的主列
⎡⎣⎢1 0 0010⎤⎦⎥
列出R的自由列
⎡⎣⎢2 0 0−220⎤⎦⎥
去掉自由列的0行
[2 0−22]
乘-1后
[−2 02−2]
恰好第一列就是第一个特解的主变量,第二列就是第二个特解的主变量
证明
假设R是简化行阶梯形式,假设主列I在前,自由列F在后
R=[I 0F0]
定义零空间矩阵N,每一列都是Rx = 0的一个特解
有 N=[−F I]