04. 零空间

零空间定义

线性方程组 Ax=0 的所有解x的集合称为矩阵A的零空间

零空间求解


A=1 2 32462682810


x=x1x2x3x4

消元

1 2 324626828101 0 02002222441 0 0200220240

最终的矩阵称为U,其中每行的第一个非0的数称为主元,主元的数量称为矩阵的,主元所在的列称为主列,其余列称为自由列

矩阵U的第二列与第四列为自由列,这意味着所求的解中 x2,x4 是任意的

列出此时所求的方程组

{x1+2x2+2x3+2x42x3+4x4=0=0

指定 x2=1,x4=0 ,可解得 x1=2,x3=0

获得一个解 2 1 0 0 ,显然这个解的任意倍数也是方程的解

于是我们在4维空间中找到了一条直线,这条直线同时属于矩阵的零空间

零空间并不仅仅只有这一条直线

指定 x2=0,x4=1 ,可解得 x1=2,x3=2

获得一个新解 2 0 2 1

上面通过对自由变量的指定得到了两个特解

2 1 0 02 0 2 1

两个特解的所有线性组合就是整个零空间,需要的特解的数量等于自由变量的数量

上面的消元结果可进一步简化成简化行阶梯形式(主列除了主元全是0,且主元为1)

1 0 02002202401 0 0200010220

将简化行阶梯形式的矩阵记作R,列出R的主列

1 0 0010

列出R的自由列

2 0 0220

去掉自由列的0行

[2 022]

乘-1后

[2 022]

恰好第一列就是第一个特解的主变量,第二列就是第二个特解的主变量

证明

假设R是简化行阶梯形式,假设主列I在前,自由列F在后

R=[I 0F0]

定义零空间矩阵N,每一列都是Rx = 0的一个特解

N=[F I]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值