灰度图像--图像增强 双边滤波 Bilateral Filtering

学习DIP第31天

转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意。有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!!

文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro

开篇废话

 

     废话开始,话说昨天写博客写完了,发表以后居然刷出来的是空白,顿时很生气,因为写了一上午的东西瞬间就没了,于是在微博上吐槽了csdn,于是csdn的官方微博和客服微博都跟我进行了沟通和道歉,感觉态度还是不错的,作为用户没有付给他们钱,但还是受到了不小的重视,感觉还是不错。学习是一个被分享之后经过自己加工后再分享的过程,一个分享的平台是很重要的选择,好的平台能够学到知识,并能分享知识,和别人讨论知识,收集资源分享资源。希望大家共同进步。

       图像增强,平滑第二天,虽然说是第二天,但要学习和研究包括写程序,都不是一天完成的。上一篇写的是线性滤波模板,此类模板我们可以叫他们静态模板,因为其只依赖于我们的选择,我们一旦选择完成,模板就唯一确定,不会在卷积的过程中产生变换,所以这类模板具有线性性质,但缺点是不灵活,不能根据不同灰度变化情况来实时的调整权重,双边滤波就是一种非线性模板,能够根据像素位置和灰度差值的不同产生不同的模板,得到不同的滤波结果。

 

基本思路

内容迁移至 

 http://www.face2ai.com/DIP-5-3-灰度图像-图像增强-双边滤波BilateralFiltering/

 http://www.tony4ai.com/DIP-5-3-灰度图像-图像增强-双边滤波BilateralFiltering/

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值