caffe 学习系列之finetuning

本文介绍了如何利用Caffe在Mac OS X系统上对自定义的16000张图像数据集进行图像分类的Finetuning。数据集包含9种类别,使用了预训练的GoogLeNet模型,并详细讲述了从转换数据集为LMDB格式,生成mean.binaryproto,到修改solver和train_val.prototxt文件进行训练的过程。同时提供了数据集的下载链接和训练中断后恢复的技巧。
摘要由CSDN通过智能技术生成

在安装好caffe之后,下一步自然就是运行一些demo 来玩下。
在caffe 的官网的notebook 中已经介绍了如何对caffe 提供的demo 的数据集进行finetuning, 这里就不过多的介绍了。caffe finetuning 的demo

这一篇主要是介绍如何用caffe提供的model 来训练我们自己的数据集。

我用的系统是mac osx 10.11 EI, 主要实现的工具是使用terminal 终端和caffe c++ 的命令行接口

  1. 数据集是大概16000张照片,主要是对这些照片的9中照片做图像的分类。(因为这是我的一个课程作业,老师提供了大概3000张左右的照片给我们预测,预测结果在课程网站上面直接显示出来,所以我没有从训练集选择30%的照片作为测试集来验证。如果想要自己训练并且测试的话,可以写一个小程序自己生成训练集和测试集。)
    我把我的测试集放到百度云了
    链接: http://pan.baidu.com/s/1i5rsMFF 密码: edpc
    有兴趣的同学可以去下载下来玩一玩。
    数据集包括了16000张照片 和 包含他们文件位置和label 的train.txt

2.选择的model 是caffe 提供的googlenet, 它是2014 ilvsrc 图像分类比赛的冠军。装好caffe之后,可以在命令行进入caffe的根目录之后输入:

python scripts/download_model_binary.py models/bvlc_reference_googlenet

然后会下载一个大概50M 左右的googlenet.caffemodel 下载完成之后可以在 models/bvlc_googlenet/ 的文件夹中看到 以下文件:
train_val.prototxt
quick_solver.prototxt
solver.prototxt
deploy.protoxt
bvlc_googlenet.caffemodel
readme.md

3.在model 下载完成之后,下一步是要使用caffe tools中的convert_imagenet 把我们的数据集转成LMDB 格式。(在caffe中数据默认是通过LMDB 格式来存取的,所以要转格式。)当然,caffe 的框架也有提供其他的格式存取,不过入门的话还是用LMDB 比较方便。
转格式的代码如下:
进入caffe 根目录

GLOG_logtostderr=1 ./build/tools/convert_imageset \
/这里写的是照片根目录的路径 \
/这里写的是train.txt 的路径 \
/这里写的是生成的train_lmdb 存的路径 \

要注意的是ÿ

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值