英伟达GPU显卡计算能力评估

本文提供了详尽的CUDA及GPU计算支持的硬件列表,涵盖了Tesla工作站产品、Tesla数据中心产品、Quadro桌面与移动产品、NVS产品、GeForce产品以及Tegra/Jetson移动设备等,展示了不同产品的计算能力等级。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Find out all about CUDA and GPU Computing by attending our GPU Computing Webinars and joining our free-to-joinCUDA Registered developer Program.

  • Learn about Tesla for technical and scientific computing
  • Learn about Quadro for professional visualization

If you have an older NVIDIA GPU you may find it listed on our legacy CUDA GPUs page
Click the sections below to expand

************************************************************************************************************


//

Tesla Data Center Products

GPUCompute Capability
Tesla P1006.0
Tesla P406.1
Tesla P46.1
Tesla M405.2
Tesla M405.2
Tesla K803.7
Tesla K403.5
Tesla K203.5
Tesla K103.0

************************************************************************************************************



//

Quadro Mobile Products
GPUCompute Capability
Quadro K6000M3.0
Quadro M5500M5.0
Quadro K5200M3.0
Quadro K5100M3.0
Quadro M5000M5.0
Quadro K500M3.0
Quadro K4200M3.0
Quadro K4100M3.0
Quadro M4000M5.0
Quadro K3100M3.0
Quadro M3000M5.0
Quadro K2200M5.0
Quadro K2100M3.0
Quadro M2000M5.0
Quadro K1100M3.0
Quadro M1000M5.0
Quadro K620M5.0
Quadro K610M3.5
Quadro M600M5.0
Quadro K510M3.5
Quadro M500M5.0

************************************************************************************************************


Desktop Products

GPUCompute Capability
NVIDIA NVS 8105.0
NVIDIA NVS 5103.0
NVIDIA NVS 3152.1
NVIDIA NVS 3102.1

//

Mobile Products
GPUCompute Capability
NVS 5400M2.1
NVS 5200M2.1
NVS 4200M2.1

************************************************************************************************************

5) CUDA-Enabled TEGRA /Jetson Products


GeForce Notebook Products

GPUCompute Capability
GeForce GTX 10806.1
GeForce GTX 10706.1
GeForce GTX 10606.1
GeForce GTX 9805.2
GeForce GTX 980M5.2
GeForce GTX 970M5.2
GeForce GTX 965M5.2
GeForce GTX 960M5.0
GeForce GTX 950M5.0
GeForce 940M5.0
GeForce 930M5.0
GeForce 920M3.5
GeForce 910M5.2
GeForce GTX 880M3.0
GeForce GTX 870M3.0
GeForce GTX 860M3.0/5.0(**)
GeForce GTX 850M5.0
GeForce 840M5.0
GeForce 830M5.0
GeForce 820M2.1
GeForce 800M2.1
GeForce GTX 780M3.0
GeForce GTX 770M3.0
GeForce GTX 765M3.0
GeForce GTX 760M3.0
GeForce GTX 680MX3.0
GeForce GTX 680M3.0
GeForce GTX 675MX3.0
GeForce GTX 675M2.1
GeForce GTX 670MX3.0
GeForce GTX 670M2.1
GeForce GTX 660M3.0
GeForce GT 750M3.0
GeForce GT 650M3.0
GeForce GT 745M3.0
GeForce GT 645M3.0
GeForce GT 740M3.0
GeForce GT 730M3.0
GeForce GT 640M3.0
GeForce GT 640M LE3.0
GeForce GT 735M3.0
GeForce GT 635M2.1
GeForce GT 730M3.0
GeForce GT 630M2.1
GeForce GT 625M2.1
GeForce GT 720M2.1
GeForce GT 620M2.1
GeForce 710M2.1
GeForce 705M2.1
GeForce 610M2.1
GeForce GTX 580M2.1
GeForce GTX 570M2.1
GeForce GTX 560M2.1
GeForce GT 555M2.1
GeForce GT 550M2.1
GeForce GT 540M2.1
GeForce GT 525M2.1
GeForce GT 520MX2.1
GeForce GT 520M2.1
GeForce GTX 485M2.1
GeForce GTX 470M2.1
GeForce GTX 460M2.1
GeForce GT 445M2.1
GeForce GT 435M2.1
GeForce GT 420M2.1
GeForce GT 415M2.1
GeForce GTX 480M2.0
GeForce 710M2.1
GeForce 410M2.1

************************************************************************************************************

6) Tegra Mobile & Jetson Products


Tegra Mobile & Jetson Products

GPUCompute Capability
Jetson TX15.3
Jetson TK13.2
Tegra X15.3
Tegra K13.2

### DeepSeek-R1 对 Nvidia GeForce RTX 4070 的兼容性分析 DeepSeek-R1 是一款高性能计算平台,设计用于处理复杂的机器学习任务和其他高密度运算工作负载。对于硬件支持方面,官方文档指出该平台能够良好适配多种 GPU 架构[^1]。 针对具体提到的 Nvidia GeForce RTX 4070 配置(具有 12 GB GDDR6X 显存),理论上可以满足大多数情况下运行 DeepSeek-R1 所需的基础条件。然而值得注意的是,在实际应用过程中还需考虑以下几个因素: #### 计算能力需求 RTX 4070 基于 Ada Lovelace 架构构建,拥有强大的浮点运算能力和张量核心性能,这使得其非常适合执行现代 AI 应用程序中的矩阵乘法操作以及其他密集型数据并行算法。 #### 内存容量考量 虽然 12GB VRAM 已经相当可观,但对于某些特别占用资源的任务来说可能仍然不足。如果目标模型非常庞大或者训练集规模巨大,则可能会遇到内存溢出的问题。因此建议评估具体的项目需求来判断是否适合此规格的显卡[^2]。 #### 软件环境匹配度 考虑到驱动版本以及 CUDA Toolkit 版本等因素的影响,确保安装最新版 NVIDIA Driver 和相适应版本的 CUDA SDK 将有助于提高系统的稳定性和效率。 ```bash # 安装最新的NVIDIA驱动程序 sudo apt-get update && sudo apt-get install nvidia-driver-535 # 下载并安装CUDA工具包 wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.0-1_all.deb sudo dpkg -i cuda-keyring_1.0-1_all.deb sudo apt-get update && sudo apt-get -y install cuda ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值