目录
1. 线性规划LP的标准形SLP
其中约束方程为加入松弛变量的情况。
LP是特殊的凸规划。


2. 图解法


3. LP原问题与对偶问题
3.1 弱对偶定理 与 强对偶定理
弱对偶定理
原问题P 和对偶问题D 有 可行解,则 P的最优目标函数 D的最优目标函数,即
。

强对偶定理
原问题P 和对偶问题D 有 可行解,且均有 最优解,则 最优目标函数值相等。

3.2 互补松弛定理
互补松弛定理

kkt的互补松弛性:
如果在最优条件下一个约束不等式是松的,那么这个约束对应的影子价格为0。反过来说,如果这个约束对应的影子价格严格大于0,那么这个约束不等式一定是紧的。
🍇 3.2 通过定义法求得对偶问题
对称形式


非对称形式

🍇 3.3 通过拉格朗日函数转化求得对偶问题



本文深入探讨了线性规划的SLP标准形式、图解求解方法,讲解了原问题与对偶问题的弱对偶与强对偶定理,包括互补松弛定理和对偶问题的不同求解方式。同时涵盖了拉格朗日函数的应用和关键概念如影子价格。
5947

被折叠的 条评论
为什么被折叠?



