Column-and-row Generation 列和行生成算法(一)

论文地址:Linear Programs with Column-Dependent-Rows

行生成算法与列生成算法

其实行生成算法(Row Generation/Constraint Generation)与列生成算法(Column Generation)单独的算法解释是有的:

“行生成,列生成”学习笔记

浅析constraint generation(约束生成,行生成)和column generation(列生成)

然而当两个算法需要统一成一个算法(Column-and-row Generation,以下简称CRG)的时候,发现相关的中资料特别少,那我就来抛砖引玉吧。

行生成算法简单来说是不断地生成一个行(被违反约束行),根据加入到RMP(Restricted Master Problem)中,求解RMP,直到得到最优解。

而列生成算法是不断地生成一个列(可行的变量列),根据PP(Price Problem)判断是否加入到RMP中,求解RMP,直到得到最优解。

column-dependent-rows (CDR-problems)

CRG是为了解决CDR problem而产生的,CDR问题是一类特定的线性规划问题(LP),其特征有:

  • 生成列的同时也可能会生成相关的约束(linking constraints)(行),即存在与行和列同时相关的变量。
  • 相关联的约束太多,无法将这些约束直接包含在公式中。完整的约束集的显性描述只在整个变量集存在时可用。约束不全是显性的,也就是说,行的个数不可能在一开始就知道。

CRG可以通过合适的decomposition方法来分解成子问题,比如

### 舞蹈链算法用于数独生成 舞蹈链(Dancing Links)是种高效的精确覆盖问题求解技术,最初由计算机科学家Donald Knuth提出。该算法通过双向循环表表示稀疏矩阵中的节点连接关系来解决问题。 #### 使用舞蹈链生成数独的具体过程如下: 1. **构建初始棋盘** 构建个完整的9×9标准数独棋盘并填充有效数值。这可以通过预先定义好的模式或者随机填充值实现[^2]。 2. **转换为精确覆盖问题** 将数独游戏转化为个特定形式的精确覆盖问题实例。具体来说,对于每个可能放置数字的位置(i,j),如果可以放k(1≤k≤9),则创建条记录描述这事实。每条记录包含四个约束条件:、宫格内不重复以及单元格内的值唯性。这些约束构成了个问题空间,其中每项都对应于数独规则的个方面[^1]。 3. **应用舞蹈链算法** 利用舞蹈链数据结构存储上述建立起来的关系网络,并执搜索操作寻找满足所有给定约束条件的组解决方案。当找到组符合条件的选择时,则意味着得到了个新的合法数独布局;反之如果没有可方案,则说明当前尝试失败需调整输入参数重新开始。 4. **移除多余提示** 为了形成最终谜题,还需要从已知解答中逐步删除部分元素作为玩家需要填写的部分。此阶段的关键在于确保剩余线索能够引导至唯的正确答案,同时控制难度级别以适应不同层次的目标受众需求。 ```python import random from dlx import DLX # 假设有个实现了DLX算法的库 def generate_sudoku(): """Generates a valid Sudoku puzzle using Dancing Links algorithm.""" # Initialize the exact cover matrix for an empty board. rows = [] cols = ['row-col', 'row-num', 'col-num', 'box-num'] for r in range(9): for c in range(9): for n in range(1, 10): row_entry = [ (r * 9 + c), # Row and column constraint ((r * 9) + n - 1), # Row number constraint (((c % 9) * 9) + n - 1), # Column number constraint ((((r // 3) * 3 + c // 3)) * 9 + n - 1)] # Box number constraint rows.append(row_entry) solver = DLX(rows, cols) solution = solver.search() if not solution: raise Exception('Failed to find any solutions.') grid = [[0]*9 for _ in range(9)] for entry in solution: i, j, num = divmod(entry[0], 9)[0], divmod(entry[0], 9)[1], int((entry[-1]+1)/9)+1 grid[i][j] = num return remove_clues(grid) def remove_clues(complete_board): """Randomly removes clues from complete board while ensuring uniqueness of solution""" pass # Implementation details omitted here. if __name__ == '__main__': try: sudoku_puzzle = generate_sudoku() print(sudoku_puzzle) except Exception as e: print(f'Error occurred during generation: {e}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值