MATLAB人体行为检测与识别

本文探讨了基于MATLAB的人体行为检测与识别技术,主要涉及肤色检测、背景差分法以及行为识别。首先,通过肤色特征判断是否为人体,接着使用背景差分法和阈值分割提取人体,最后利用人体长宽比例识别行为,如走、坐、躺等。文章详细介绍了算法实现,包括灰度化、背景差分法和行为识别过程。
摘要由CSDN通过智能技术生成

MATLAB人体行为检测与识别

一、课题介绍

人体行为检测与识别是当前研究的重点,具有很高的研究价值和广阔的应用前景。主要应用在型人机交互、运动分析、智能监控和虚拟现实也称灵境技术(VR)领域,对于研究人体检测和识别有着重要的意义。因为人的运动的复杂性和对外部环境的多变性,使得人们行为识别和检测具有一些挑战。对人类行为和检测的研究目前处于初级阶段,有待进一步研究和开发。

本文基于matlab人体行为识别和检测的研究,本文主要研究的是从图像中判断出目标处于何种行为,例如常见的走、坐、躺、跑、跳等行为的识别。从现有的很多主流研究成果来看,最常见的行为识别系统结构包括几个模块:目标检测、目标跟踪、行为识别。本文首先对图像进行判断是否有人体目标,识别出人体后对图像进行灰度化,在对灰度图像用背景差法与背景图像比对,最后,比对提取出的人体来判断人体处于何种行为。


二、背景介绍

人体行为检测与识别技术除了在智能监控系统中具有有广泛的应用前景和潜力,在计算机视觉中是一个极具有吸引力及挑战性的问题。人体运动的视觉分析是一个新兴前沿的研究领域,涉及模式识别,图像处理,计算机视觉,人工智能等多门学科。它可以广泛应用于许多领域,如:运动捕捉,人机交互,监控和安全,环境控制和监测,体育及娱乐分析等,特别是在视频监控方面可广泛应用于银行、邮电、教育、交通、公安、监狱、法庭、大型公共设施、公共场所(银行、医院、停车场、商店、等公共场所甚至家庭庭院内)、大型仓库及军事基地等场所,在国防与公共安全领域起着日益重要的作用。综上所述,因此,人体动作的视觉分析具有极大的商业价值与现实意义。


三、 研究内容

本文主要对人体行为检测和识别方法进行研究,主要研究内容如下:

(1)判断是否为人体

在目标提取之前,首先要对输入的图片进行检测。本文通过肤色检测判断目标是否为人体。

(2)人体目标提取

如果是人体导入背景图片与背景图片做差,再通过背景差阈值分割法进行提取。

(4)行为识别

在解决了以上的问题之后,接下来就是要选择一种合适的算法来进行人体姿态识别,这也是本文研究的重点和难点。本文采用一种人体目标的连通区域的长宽比例来对人体行为进行识别。


四 算法实现

4.1人脸特征

人脸是一个很常见的,非常复杂的区域具有很强的代表性,是人体生物特征最直接的表现,并与其他人的特点相比中包含的脸部的其他生物信息有以下几个特点:

(1)是最丰富的面部特征。

(2)应用非常方便,无需使用其他辅助设备。

(3)人脸特征是最熟悉的人性化特点,很容易被别人接受;

(4)人脸包含特征信息可直接用于使用,它不易被仿冒;

在人类的知识里面,人们对人的理解是最丰富的,人脸的结构非常清晰,从脸部和五官的位置之间的关系非常了解对方,人类已经没有什么困难判断一个给定的通过人脸检测或识别个人身份的图像是否具有正面是真的很难。另外,通过观察一个面的外部特征,它可以在很大程度上决定一个人的性别,表情,种族,身份和性格等直到与心理因素的某些内容。但是,自动检测与识别的脸是一个具有挑战性的经典研究,特别是要建立一个实用的系统,可全自动面部识别是非常困难的。主要的困难主要有以下几个方面:

(1)面部器官,形状,尺寸,颜色,质地和千变万化的面部表情,是很复杂的,很难形容一个统一的模式;

(2)人脸表面经常有一些配套的异物,如眼镜,胡须,耳环等;

(3)的复合物的实际应用中,如复杂的背景,光强,脸姿势如此不确定。

4.2 基于肤色的人脸检测

人脸非常重要的一个特性是肤色。研究表明:尽管不同种族、不同年龄、不同性别的人肤色看起来也会不相同,不同主要体现在亮度上面,根据亮度提取的色度空间里,不一样的肤色分布是具有聚类性的。在多种彩色空间里选取YCbCr彩色空间进行肤色的提取,是利用了肤色在色度空间里的聚类性。

v2-a42d41ee0acc878b52028f724d5a861b_b.jpg

颜色空间颜色空间是定义、创建和观察颜色的方法。另外还有一些针对某些类型的图像应用通过统计或物理分析,由RGB线性或非线性导出的颜色空间,静态肤色模型目前常用的静态肤色建模方法有三种类型:辨别肤色范围、高斯密度函数的估计和直方图的统计,本文采用辨别肤色范围的方法。规定肤色范围用数学表达式明确规定肤色范围是一种简单的肤色建模方式,假设输入像素的颜色落入RCr=[140;170]和RCb=[80;120]限定的矩形区域,就认为是属于皮肤颜色像素。在不同的亮度分量y上的矩形区域(RCr,RCb)不同。这种简单的判断方式运行起来即快速又高效,特别是在实时系统中更具有可用的价值。

由统计表明不同种族的人类的皮肤颜色区别主要受亮度的影响,而受颜色的影响比较小,所以直接考虑YCbCr空间的CbCr分量,映射为CbCr空间,在CbCr空间下,受亮度变化的影响少,且是两维独立分布。通过实践,选取大量皮肤颜色样本进行统计,发现皮肤颜色在CbCr空间的分布呈现出良好的聚类特性。

统计分布满足:80

v2-cf8c7892c800aa6786d5ab7a56a80298_b.jpg

Cb

v2-9dec25272bae0532bc5edfe3be787537_b.jpg

120

并且满足:140

v2-5d2a7d7c460be058070a81a5c2f44b1a_b.jpg

Cr

v2-5d2a7d7c460be058070a81a5c2f44b1a_b.jpg

170

不同人类的皮肤虽然相差很大,但在色度上的差异远远小于亮度上的差异,其实不同人的皮肤颜色在色彩上比较接近,但在亮度上的差异很大,在二维色度平面上,皮肤颜色的区域比较集中,可以用高斯分布描述。

其中每个像素的灰度对应该点与皮肤颜色的相似度,相似度的计算公式如下:

v2-314e3135363b9d616619931c450f0bad_b.jpg

(2.21)

其中m为均值,m=E(x),C为协方差矩阵,

v2-0eeabb45e89986f0f428556864a877e9_b.jpg

,

v2-94795d0dec647650963a6b7ce92b27f0_b.jpg

(2.22)

肤色分布的2D高斯模型G(m,V2)也可表示为

v2-398c5a1fb53465757b44767cc69046a3_b.jpg

(2.23)

v2-974c0fdabe150f96ad517b29c5aedcb2_b.jpg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值