SCI 给了大修还会被拒吗?看了这篇真的懂了

论文投稿过程中的大修并不意味着终结,而是有机会被接受的信号。作者需认真对待审稿人意见,保持谦逊态度,逐条详细回复,注意回复时间和质量,确保修改后的论文满足要求。大修通常涉及较多修改,可能需要多次往返,但坚持和正确的方法能提高接受概率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

完成一篇论文,姑且不说在实验阶段付出的努力,单单就是整理数据、构思结构、撰写英文论文、修改格式、选刊、投稿就足够让小伙伴们脱一层皮了,尤其是第一次投稿的同学,好不容易把稿件投出去等待审稿就要好几个月,其中的煎熬真的是无法言表,投过论文的同学应该都懂。尤其是等论文毕业的同学,好不容易等来了审稿结果,结果编辑给了“major revision”,也就是大修,再看看审稿人不留情面的审稿意见,密密麻麻写了好几页,真的是想死的心都有,这么严厉是不是没戏了,要不要重新投别的期刊,这么长时间的等待是不是都浪费了?

这里小编告诉大家完全不必灰心丧气,这不是说明你的论文没戏了,恰恰相反,这说明你的论文很有希望~

一般投稿后会有六种结果,分别是 Desk reject(直接拒稿)、审稿后拒稿、Resubmit(修改后重新提交)、 大修、 小修和直接接受

最好的结果就是直接接受或者是小修,但是要求文章是接近完美的状态,这种情况比较少见,尤其是直接接受。直接拒稿的一般也不是很多,基本上就是稿件与目标期刊的范围不符或者稿件的水平远远低于期刊的要求。

剩下的就是审稿后拒稿、修改后重新提交和大修了,这些情况在SCI投稿过程中是最常见的状态了。后两者意思大概差不多,都是需要作者进行比较大的修改然后再提交进行审稿,如果审稿后拒稿那就赶紧找别的期刊吧。

如果期刊给了修改的机会,那说明期刊编辑和审稿人对你的研究还是比较感兴趣的,如果在回复审稿人问题时做到有理有据,按要求补充实验修改论文,那么还是有非常大的机会被接受的。

这里给大家打了气,让大家不要被审稿人的审稿意见吓住但是也不要盲目乐观,文章是否被接受还是要看审稿意见的回复情况,所以在回复审稿意见及修改文章时一定要认真仔细。下面小编就介绍一下大修具体意味着什么,好让大家在收到大修意见时做到心里有数。

major revision期间,作者会从editor那里反馈到一系列的问题和评论。每个reviewer提的问题的数量可能在几个到十几个不等。这些问题和评论在绝大部分情况下,都不会是友好简单容易回答的类型。

如何正确有效且保持良好态度来进行修改和答复,直接决定了下一轮review的成功率。因为major revision并不能保证修改了就一定被接受。也经常会出现因为不重视修改,草率回复修改意见而直接被拒稿的情况。所以,major revision考验的主要是态度、勤奋和辩论能力。

另外,major revision

如果二分类预测模型的假阳性率(False Positive Rate,FPR)比真阳性率(True Positive Rate,TPR)高,说明模型在负例样本上的误判较多,可能存在一定的问题。针对这种情况,可以考虑以下几个解决方案: 1. 调整分类阈值:分类模型会根据设定的阈值将样本划分为正例或负例。通过调整阈值,可以平衡模型在正例和负例之间的预测结果。降低阈值可能会提高真阳性率,但也会增加假阳性率。需要根据具体情况进行权衡和调整。 2. 特征工程:通过对特征进行优化和选择,可以提升模型的性能。例如,考虑引入更多相关的特征或对现有特征进行变换、组合等,以提高模型对正例和负例的区分能力。 3. 选择合适的算法模型:不同的算法模型对于不同类型的数据和问题有不同的适用性。可以尝试使用其他算法模型或集成多个模型来改善分类结果。 4. 数据平衡处理:如果训练数据存在类别不平衡的情况,可以采用过采样、欠采样或者生成合成样本等方法来调整样本分布,以提高模型对负例的识别能力。 在实际应用中,发表论文并不仅仅依赖于模型的性能,还需要考虑研究问题的创新性、实验设计和结果的可靠性等因素。如果你的模型在假阳性率方面存在一些问题,可以尝试改进模型,并将改进后的结果与之前的结果进行对比和评估。最终是否能够发表SCI论文还需要根据研究领域的要求和具体情况来综合考虑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值