POJ 1696 Space Ant(极角排序&&叉积)

Space Ant
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 4744 Accepted: 2968
Description

The most exciting space discovery occurred at the end of the 20th century. In 1999, scientists traced down an ant-like creature in the planet Y1999 and called it M11. It has only one eye on the left side of its head and just three feet all on the right side of its body and suffers from three walking limitations:
It can not turn right due to its special body structure.
It leaves a red path while walking.
It hates to pass over a previously red colored path, and never does that.

The pictures transmitted by the Discovery space ship depicts that plants in the Y1999 grow in special points on the planet. Analysis of several thousands of the pictures have resulted in discovering a magic coordinate system governing the grow points of the plants. In this coordinate system with x and y axes, no two plants share the same x or y.
An M11 needs to eat exactly one plant in each day to stay alive. When it eats one plant, it remains there for the rest of the day with no move. Next day, it looks for another plant to go there and eat it. If it can not reach any other plant it dies by the end of the day. Notice that it can reach a plant in any distance.
The problem is to find a path for an M11 to let it live longest.
Input is a set of (x, y) coordinates of plants. Suppose A with the coordinates (xA, yA) is the plant with the least y-coordinate. M11 starts from point (0,yA) heading towards plant A. Notice that the solution path should not cross itself and all of the turns should be counter-clockwise. Also note that the solution may visit more than two plants located on a same straight line.

Input

The first line of the input is M, the number of test cases to be solved (1 <= M <= 10). For each test case, the first line is N, the number of plants in that test case (1 <= N <= 50), followed by N lines for each plant data. Each plant data consists of three integers: the first number is the unique plant index (1..N), followed by two positive integers x and y representing the coordinates of the plant. Plants are sorted by the increasing order on their indices in the input file. Suppose that the values of coordinates are at most 100.
Output

Output should have one separate line for the solution of each test case. A solution is the number of plants on the solution path, followed by the indices of visiting plants in the path in the order of their visits.
Sample Input

2
10
1 4 5
2 9 8
3 5 9
4 1 7
5 3 2
6 6 3
7 10 10
8 8 1
9 2 4
10 7 6
14
1 6 11
2 11 9
3 8 7
4 12 8
5 9 20
6 3 2
7 1 6
8 2 13
9 15 1
10 14 17
11 13 19
12 5 18
13 7 3
14 10 16
Sample Output

10 8 7 3 4 9 5 6 2 1 10
14 9 10 11 5 12 8 7 6 13 4 14 1 3 2
Source

Tehran 1999

题意:有只蚂蚁,它不能往右转弯,有N株植物,它每天只能在一株植物上,路径不交叉,第一天在y轴上,输出使它存活最久的路径

做法:把现在的点当做极点对其他点进行极角排序,每次取还没访问过的最小极角的点,再继续排序。

极角排序:利用叉积,(a-o)^ ( b - o ) ,叉积大于0,说明oa在ob的顺时针方向,o为极点,当oab共线时,按照a.b到o的距离排序,由于可能出现多个点共线的情况,就让距离小的排在前面就可以了。

#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <map>
#include <stack>
#include <vector>
#define maxn 110
#define maxe 100010
typedef long long ll;
using namespace std;
const double eps=1e-5;
const int inf=0x3f3f3f3f3f;
const double PI=2*asin(1.0);
typedef double T1;
struct Point
{
    int id;
    T1 x,y;
    bool done;
    Point(){};
    Point(T1 a,T1 b)
    {
        x=a,y=b;
    }
    void input()
    {
        scanf("%lf%lf",&x,&y);
        done=false;
    }
    Point operator +(Point a)
    {
        Point b(x+a.x,y+a.y);
        return b;
    }
    Point operator -(Point a)
    {
        Point b(x-a.x,y-a.y);
        return b;
    }
    T1 operator *(Point a)
    {
        return x*a.x+y*a.y;
    }
    T1 operator ^(Point a)
    {
        return x*a.y-y*a.x;
    }
    bool operator <(Point a)
    {
        return x<a.x;
    }
}p[maxn];
double mul(Point p0,Point p1,Point p2)
{
    return (p1-p0)^(p2-p0);
}
Point zero(0,0);
Point c;
int sgn(double x)
{
    if(fabs(x) < eps)return 0;
    if(x < 0) return -1;
    return 1;
}
double dist(Point a,Point b)
{
    return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
bool cmp(Point a,Point b)
{
    double tmp=(a-c)^(b-c);
    if(sgn(tmp)==0)return dist(c,a)<dist(c,b);
    if(sgn(tmp)<0)return false;
    return true;
}
int main()
{
    int n;
    int id;
    int t;
    //freopen("in.txt","r",stdin);
    scanf("%d",&t);
    while(t--)
    {
        vis.clear();
        scanf("%d",&n);
        double ymin=1e9;
        for(int i=0;i<n;i++)
        {
            scanf("%d",&id);
            p[i].id=id;
            p[i].input();
            if(ymin>p[i].y)
            {
                ymin=p[i].y;
                c=p[i];
                swap(p[i],p[0]);
            }
            else if(sgn(ymin-p[i].y)==0)
            {
                if(p[i].x<c.x)
                {
                    c=p[i];
                    swap(p[i],p[0]);
                }
            }

        }
        c=p[0];
        for(int i=1;i<n;i++)
        {
            sort(p+i,p+n,cmp);
            c=p[i];
        }
        printf("%d",n);
        for(int i=0;i<n;i++)
        {
            printf(" %d",p[i].id);
        }
        printf("\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值