AI笔记: 数学基础之线性代数与矩阵

本文深入浅出地介绍了线性代数中的核心概念,包括线性关系、矩阵的基本性质、矩阵与向量的关系、矩阵运算如加减乘法以及转置,特别强调了矩阵在描述线性变换中的作用。此外,还涵盖了方阵、对角矩阵、单位矩阵和零矩阵等特殊类型的矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性代数

  • 线性(linear)指量(变量)与量(变量)之间按比例、成线性关系,在数学上可以理解为一阶导数为常数的函数
  • 非线性(non-linear)是指不成比例、没有直线关系, 一阶导数不是常数的函数
  • 线性代数中的基本量指的是向量,基本关系是严格的线性关系
  • 也就是可以简单的将线性代数理解为向量和向量之间的线性关系的映射

矩阵

  • 矩阵:即描述线性代数中线性关系的参数,即矩阵是一个线性变换,可以将一些向量转换为另一些向量
  • 在初等代数中,y=ax表示的是x到y的一种映射关系,其中a是描述这种关系的参数
  • 在线性代数中,Y=AX表示的是向量X和Y的一种映射关系,其中A是描述这种关系的参数, 就是矩阵
  • 在线性代数中,矩阵是一种线性变换

矩阵的直观表示

  • 数域F中m*n个数排成m行n列,并括以圆括弧(或方括弧)的数表示成为数域F上的矩阵,通常用大写字母记为A或者 A
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wang's Blog

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值