[Termux] termux+ubuntu+vscode+conda环境搭建

软件硬件描述

Termux安装&配置

安装termux-app

下载termux-app apk文件,并在手机上安装,并打开

图片 1
termux安装完成
图片 2
安装ssh

开启SSH服务

#- 安装openssh
pkg install openssh -y
#- 手动启动sshd
sshd
#- 查看用户名
whoami
#- 设置登录密码
passwd
#- 查看本机ip
ifconfig | grep inet

随后我们就可以在电脑终端上通过ssh登录了(注意sshd 监听的是8022端口而不是22号端口),后续就可以在电脑终端上敲命令了:

ssh u0_a231@192.168.10.6 -p 8022
图片 1
成功SSH登录

termux换源

换成国内源更稳定,这里换成清华源,换好之后会自动update:

termux-change-repo
图片 1
选择单镜像
图片 2
选择清华源
图片 3
自动更新

安装Ubuntu

#- 安装proot-distro
pkg install proot-distro -y
#- 查看有哪些系统
proot-distro list
#- 安装ubuntu系统
proot-distro install ubuntu
#- 登录ubuntu系统
proot-distro login ubuntu
图片 1
成功安装Ubuntu

vscode连接

启动SSH服务

前面介绍的是termux上启动ssh,现在我们需要在ubuntu系统上启动ssh,这样我们才能够vscode直接登录到ubuntu系统上,并打开上面的文件夹:

#- 安装openssh-server
apt update
apt install openssh-server -y
#- 修改配置文件,指定port
vim /etc/ssh/sshd_config
#- 启动ssh服务
service ssh start
图片 1
指定端口号

测试SSH登录

我们直接用user@ip + passwd登录不了,原因未知。所以选择配置免密登录:

cat ~/.ssh/id_rsa.pub
#- 如果提示没有这个文件,则运行ssh-keygen来生成

~/.ssh/id_rsa.pub的内容贴到ubuntu系统上的~/.ssh/authorized_keys文件中(没有这个文件就手动创建)。

图片 1
配置公钥
#- 测试登录
ssh root@192.168.10.6 -p 10086
图片 1
免密登录成功

连接vscode

图片 1
配置vscode登录
图片 1
vscode登录成功

安装Conda

#- 下载miniconda安装脚本
wget -v https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-aarch64.sh
#- 运行安装脚本
bash Miniconda3-latest-Linux-aarch64.sh
图片 1
下载miniconda
图片 1
安装conda成功
### Termux 上安装 Conda 的步骤 #### 准备工作 为了确保顺利安装,在开始之前确认已经更新了Termux及其软件包列表。 ```bash pkg update && pkg upgrade -y ``` #### 安装依赖项 安装必要的依赖工具和库来支持Conda的正常运作。 ```bash pkg install wget aria2 bzip2 libzstd zstd -y ``` #### 下载 Miniconda 脚本 访问Miniconda官方网站获取最新版本下载链接,这里假设使用的是Python 3.x版本。 ```bash wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-aarch64.sh ``` 对于ARM架构(如Android手机上的Termux),请注意选择适合aarch64架构的安装包[^1]。 #### 执行安装脚本 赋予执行权限并启动安装向导。 ```bash chmod +x Miniconda3-latest-Linux-aarch64.sh ./Miniconda3-latest-Linux-aarch64.sh ``` 遵循屏幕指示完成安装流程。当被询问是否要将Anaconda路径添加到`.bashrc`时,推荐输入“yes”,以便后续可以直接调用conda命令而无需手动指定路径。 #### 初始化设置 安装完成后重启Termux应用使更改生效,并初始化Conda环境。 ```bash source ~/.bashrc conda init bash exec bash ``` 此时应该能够通过`conda --version`查看当前使用的Conda版本号验证安装成功与否。 #### 创建新环境与安装TensorFlow-GPU 基于个人需求创建特定版本的Python解释器以及所需库组成的独立开发环境;例如针对GPU加速版TensorFlow: ```bash conda create -n tf python=3.8 conda activate tf pip install tensorflow-gpu==1.12.0 -i https://pypi.tuna.tsinghua.edu.cn/simple ``` 上述操作会建立名为tf的新环境,并从中激活它用于进一步的操作,最后利用清华镜像源快速安装指定版本的tensorflow-gpu以提高效率减少等待时间[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值