一种直观理解Galois理论的途径

Galois理论的传统证明方法基于特定的多项式,使用扩域操作,导致理解和应用困难。文章揭示了Galois群与域之间的同构关系,解释了根与求根公式间1-1对应关系的重要性。通过对换子的概念,阐述了如何通过根式嵌套和Galois群来区分和固定根,为5次以上多项式无求根公式提供了直观理解。最后,通过计算对换子数量,展示了5次方程无解的原因。
摘要由CSDN通过智能技术生成

传统的Galois理论在证明5次以及以上多项式无求根公式时所使用的群论并不直观,通常需要用一些特例去逐个构造证明过程,而且这些过程均是特异的,彼此之间并不可重用。这是因为Galois理论在应用时基于扩域操作,这一自底向上的操作通常是基于特定的目标多项式,并不具有普遍性。因此,在应用的时候非常不方便,且理解起来很晦涩难懂。

Galois理论之核心在于域与域的Galois群之间的同构关系。也就是说把对于无限的域的研究转换成对于有限的,域导出的群的,研究。那么一个关键问题就是,Galois群里面的元素到底是什么。

我们知道,韦达定理确定了根与系数的关系。然而这是一种对称多项式,也就是说,在系数域中,我们无法区分不同的根。而求根公式存在之意义就是要打破这种对称性。所谓打破对称性,简单的说,就是对于每个根找到一个symbolic expression,这个expression是唯一的,不同的根就是通过这个expression来区分的。如果可以找到这样一个东西,那就说明我们找到了求根公式。

就比如说根号这个符号,它的意义是什么呢?因为我们无法在系数域中区分不同的根,为什么呢?假设根x_i=f(a,b,c,...)=r_ie^{i\theta},那么任意两个根x_ix_j之间的对换并不会改变系数的值,它们只能改变求根公式

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值