一、环境
Ubuntu 18.04 + CUDA10.0 +CUDNN
下方是我训练时的真实文件,可供大家参考
大家需要我的文件资源的请使用曲奇云盘下载,下面是下载链接:https://quqi.gblhgk.com/s/981990/7C1nyIvTyl7SRFjx
二、修改重要文件
1.yolov3-voc.cfg(darknet/cfg//yolov3-voc.cfg)
[convolutional]
size=1
stride=1
pad=1
filters=21//修改为filters=(classes+5)x3
activation=linear
[yolo]
mask = 0,1,2
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=2//修改为需要检测的类别数目
num=9
jitter=.3
ignore_thresh = .5
truth_thresh = 1
random=1//当显卡内存不够时可以修改为0
以上共修改三处均已标出,在整个文件里有三个这样的结构也就是说需要修改九处,建议先拉到文件的最下方,开始修改。
2.voc.names(darknet/data//voc.names)
wheel
goods
按照上述方法写入要检测的类别的名称,其中第一个类别的id为0,依次升序!
3.voc.data(darknet/data//voc.data)
classes= 2//类别数目
train = /home/ustc/Kaixiang/YOLO/darknet/scripts/2007_train.txt//训练集目录
valid = /home/ustc/Kaixiang/YOLO/darknet/scripts/2007_val.txt//验证集目录
names = data/voc.names//类别名称目录
backup = backup//模型的存储目录
4.Makefile(darknet//Makefile)
GPU=1
CUDNN=1
OPENCV=1
OPENMP=0
DEBUG=0
根据硬件是否有GPU,是否安装OPENCV等进行选择,有 1无0