多重线性回归不满足方差齐性假设时,需要使用最小二乘法进行参数估计。
1.判断残差方差齐性
画预测值和残差的散点图(Y轴残差,X轴预测值)。如果散点未呈现扇形或者漏斗型,则满足方差齐性。
2.权重估算
分析—回归—权重估算—拖入因变量,自变量和权重变量—点击右下角的“选项”—勾选“将最佳权重保存为新变量”
PS:最佳权重是指对数自然指数最大的指数值为最优指数
3.加权最小二乘法
分析—回归—线性—拖入自变量、因变量,将新生成的变量拖入“WLS权重”中—点击右侧的“保存”—勾选“预测值”下的“未标准化”,“残差”下的“未标准化”—继续—确定
4.绘制加权残差散点图
转换—计算—在“目标变量”中输入“加权预测值”,在“数字表达式”下输入“权重*未标准化预测值”。加权残差值得计算方法同上。
图形—旧对话框—散点图—简单散点图—将加权预测值和加权残差值分别拖入X轴和Y轴
若残差散点围绕e=0上下均匀分布,则加权校正完成,残差方差齐。