稳健性检验的几种方法

本文探讨了在统计建模中处理数据的多种方法,包括变量替换、补充遗漏变量、调整分类标准、分样本回归、改变样本容量、调整时间周期以及选择不同的计量方法。这些策略对于确保模型稳健性和结论的有效性至关重要,特别是在研究工作绩效、激励措施和其他复杂社会现象时。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.变量替换法:工作绩效既可以用工作量也可以用工作完成时间来衡量(替换因变量或者主要的自变量)。
2.补充变量法:模型中存在遗漏变量(随机扰动项与解释变量相关)。加入遗漏变量再次进行分析,看结论是否会发生改变。
3.调整变量的分类标准:水果可以按照颜色来分,也可以按照口感来分。
4.分样本回归:根据某特性将总样本分成几个小样本分别进行研究,看结论是否会发生改变。例如,在研究激励措施对工作绩效的影响时,我们可以将样本按性别分成两个小样本,在每个样本中分别进行研究。
5.改变样本容量:提出样本中的异常点和离群值。
6.缩短或者延长周期:研究不同时间段的样本
7.改变计量方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值