TRUSTVIS: A Multi-Dimensional Trustworthiness Evaluation Framework for Large Language Models

一、文章主要内容总结

本文针对大型语言模型(LLMs)在高风险领域应用中凸显的可信度问题(尤其是安全性与鲁棒性),提出了一种自动化评估框架TRUSTVIS。该框架核心是通过“安全性”与“鲁棒性”两个关联维度,实现对LLM可信度的全面评估,具体内容包括:

  1. 核心目标:解决现有评估方法孤立看待可信度维度(如将安全性与鲁棒性割裂)、方法透明度不足、易用性差等问题,搭建技术评估与实际诊断之间的桥梁。
  2. 框架架构
    • 后端:包含四个关键阶段(模型与数据集上传→生成prompt-响应(P&R)对→基于MLCommons分类法分类→通过多模型集成(LlamaGuard、LlamaGuard2、微调Longformer)与多数投票机制评估安全性,采用AutoDAN方法生成对抗性后缀评估鲁棒性)。
    • 前端:提供交互式可视化界面,支持从总览仪表盘、分类法细分分析到问题响应示例的分层探索,无需编码即可操作。
  3. 评估实验:对Vicuna-7b、Llama2-7b、GPT-3.5三款模型进行测试,采用DNA、ALERT数据集评估安全性,AutoDAN生成对抗性样本评估鲁棒性,验证了框架在识别模型分类级漏洞(如GPT-3.5在S11:性内容的安全性短板、模型在S1:暴力犯罪类别的鲁棒性缺陷)上的有效性。
  4. 核心价值:支持自定义数据集上传、自动化数据预处理,提供动态可视化报告,同时开源框架,兼顾科研严谨性与工业实用性。
### 关于 Python 中 'ValueError: A 2-dimensional array must be passed' 错误的解决方案 此错误通常发生在函数期望接收二维数组作为输入参数时,而实际传递的内容不符合该条件。以下是对此问题的具体分析以及解决方法。 #### 错误原因 当调用某些库函数(如 NumPy 或 SciKit-Learn 提供的功能)时,这些函数可能严格要求传入的是二维数组。如果传入一维数组或其他不兼容的形式,则会抛出此类错误[^1]。 #### 解决方案 可以通过以下几种方式解决问题: 1. **检查并调整数据形状** 使用 `numpy.reshape()` 方法可以重新定义数组的维度。例如,假设有一个长度为 n 的一维数组 `arr`,可以通过如下代码将其转换成 (n, 1) 形状的二维数组: ```python import numpy as np arr = np.array([1, 2, 3]) reshaped_arr = arr.reshape(-1, 1) print(reshaped_arr.shape) # 输出应为 (3, 1),表示已成功转为二维形式 ``` 2. **利用广播机制扩展维度** 如果只需要简单增加一个新轴而不改变原始数据结构,可以直接通过 `np.newaxis` 实现这一操作: ```python expanded_arr = arr[:, np.newaxis] print(expanded_arr.shape) # 结果同样是 (3, 1) ``` 3. **验证目标函数需求** 查阅所使用的具体 API 文档,确认其对于输入矩阵的确切规格要求。有时即使提供了正确的二维数组仍可能出现其他类型的匹配失败情形,在这种情况下需进一步调试程序逻辑或者寻找替代算法来满足特定接口的需求[^2]。 4. **实例演示修复过程** 下面给出一段完整的例子展示如何处理上述提到的价值观冲突状况: ```python from skimage.feature import local_binary_pattern import numpy as np img = np.random.rand(100).reshape((10, 10)) try: lbp = local_binary_pattern(img, P=8, R=2) except ValueError as e: print(f"Catched Exception: {e}") corrected_img = img if len(img.shape)==2 else img.reshape((-1, int(np.sqrt(len(img))))) lbp = local_binary_pattern(corrected_img, P=8, R=2) finally: pass ``` #### 注意事项 - 在修改任何现有代码之前,请先备份源文件以防万一出现问题难以恢复。 - 对大型项目而言,建议采用单元测试框架定期检验各模块功能正常运行状态以减少潜在风险。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值