动态规划算法——弗洛伊德算法(Dynamic Programming Algorithm - Floyd's Algorithm)

动态规划算法——弗洛伊德算法(Dynamic Programming Algorithm - Floyd’s Algorithm)


伪代码(Pseudocode)

function Floyd(W[1..n, 1..n])
    D ⟵ W
    for k ⟵ 1 to n do
        for i ⟵ 1 to n do
            for j ⟵ 1 to n do
                D[i, j] ⟵ min(D[i, j], D[i, k] + D[k, j])
    return D

时间复杂度(Time Complexity)
Time complexity of Floyd’s algorithm is Θ(n^3).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值