题目链接:
题意:
给你一个 n n n个整数的序列 a a a,让你进行两种操作:
- 给 [ l , r ] [l,r] [l,r]的之间的数字都加上 x x x
- 询问 [ l , r ] [l,r] [l,r]中值为 x x x的前驱(比其小的最大元素),不存在则输出 − 1 -1 −1
分析:
这里用分块;
与第二题相似,查找前驱我们同样需要排序,不过这里可能会想到这样的情况,即对于查询
x
x
x前驱,如果查询区间内有多个x,这样显然直接二分是不行的,即我们需要去重,或者统计区间内每个元素的个数,这里便用到了
s
e
t
set
set,我觉得这个
s
e
t
set
set用得很妙,想出这个
i
d
e
a
idea
idea的人很厉害;
从
v
e
c
t
o
r
vector
vector的使用换为
s
e
t
set
set,那么其他的操作都很类似于第
2
2
2题;
注意数据范围;
代码:
#include <algorithm>
#include <iostream>
#include <cstring>
#include <string>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <set>
#include <map>
using namespace std;
#define inf 0x7f7f7f7f
#define maxn 100050
#define N 100100
#define P 2
typedef long long ll;
typedef struct {
int u, v, next, w;
} Edge;
Edge e[2];
int cnt, head[1];
inline void add(int u, int v, int w) {
e[cnt].u = u;
e[cnt].v = v;
e[cnt].w = w;
// e[cnt].f=f;
e[cnt].next = head[u];
head[u] = cnt++;
e[cnt].u = v;
e[cnt].v = u;
e[cnt].w = w;
// e[cnt].f=-f;
e[cnt].next = head[v];
head[v] = cnt++;
}
inline void write(int x) {
if (x < 0)
putchar('-'), x = -x;
if (x > 9)
write(x / 10);
putchar(x % 10 + '0');
}
inline int read() {
int x = 0, f = 1;
char c = getchar();
while (c < '0' || c > '9') {
if (c == '-')
f = -1;
c = getchar();
}
while (c >= '0' && c <= '9') {
x = x * 10 + c - '0';
c = getchar();
}
return x * f;
}
int sz, n, m, opt, l, r, c, a[maxn], pos[maxn], mark[maxn];
set<int> s[500];
int query(int l, int r, int val) {
int res = -1, pl = pos[l], pr = pos[r], t,pval;
for (int i = l; i <= min(r, (pos[l] + 1) * sz); i++) {
t = a[i] + mark[pl];
if (t < val)res = max(res, t);
}
if (pl != pr) {
for (int i = pr * sz + 1; i <= r; i++) {
t = a[i] + mark[pr];
if (t < val)res = max(res, t);
}
}
set<int>::iterator it;
for (int i = pl + 1; i < pr; i++) {
pval=c-mark[i];
it = s[i].lower_bound(pval);
if (it == s[i].begin())continue;
it--;//这里--操作,是为了定位到,上面语句查询
//到的大于等于pval的位置,的前面一个位置
//即是小于pval的值;
res = max(*it + mark[i], res);
}
return res;
}
void update(int l, int r, int val) {
int pl = pos[l], pr = pos[r];
for (int i = l; i <= min(r, (pl + 1) * sz); i++) {
a[i] += val;
}
s[pl].clear();
for (int i = pl * sz + 1; i <= min(n, (pl + 1) * sz); i++) {
s[pl].insert(a[i]);
}
if (pl != pr) {
for (int i = pr * sz + 1; i <= r; i++) {
a[i] += val;
}
s[pr].clear();
for (int i = pr * sz + 1; i <= min((pr + 1) * sz, n); i++) {
s[pr].insert(a[i]);
}
}
for (int i = pl + 1; i < pr; i++)
mark[i] += val;
}
int main() {
cin >> n;
sz = sqrt(n);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
pos[i] = (i - 1) / sz;
s[pos[i]].insert(a[i]);
}
for (int i = 1; i <= n; i++) {
scanf("%d%d%d%d", &opt, &l, &r, &c);
if (opt) {
printf("%d\n", query(l, r, c));
} else {
update(l, r, c);
}
}
return 0;
}
我们坚持一件事情,并不是因为这样做了会有效果,而是坚信,这样做是对的。
——哈维尔