Description
n个点,i点与i+1点之间有一条边(1<=i < n),现在在这张图中再加三条边,所有边权都是1,m次查询,每次查询si到ei的最短路zi,求sum{i*zi}
Input
第一行一整数T表示用例组数,每组用例首先输入两个整数n和m表示点数和查询数,之后六个整数a1,b1,a2,b2,a3,b3表示新加的三条边的起点和终点,最后m行每行两个整数si,ei表示该次查询si到ei的最短路径(1<=n,m<=1e5)
Output
对于每组用例,输出sum{i*zi},其中zi是si到ei的最短路径长度
Sample Input
1
10 2
2 4 5 7 8 10
1 5
3 1
Sample Output
7
Solution
不加边si到ei的最短路径长度就是abs(si-ei),加边后考虑si->x->y->ei是否能够缩短最短路(x,y属于集合{a1,a2,a3,b1,b2,b3}),首先对a1,a2,a3,b1,b2,b3用floyd做一遍最短路,之后枚举x,y从中选取一个最优解即可,时间复杂度O(36m)
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
#define mod 1000000007ll
int T,n,m,a[7],dis[7][7];
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(int i=1;i<=6;i++)scanf("%d",&a[i]);
for(int i=1;i<=6;i++)
for(int j=1;j<=6;j++)
dis[i][j]=abs(a[i]-a[j]);
for(int i=1;i<=6;i+=2)dis[i][i+1]=dis[i+1][i]=1;
for(int k=1;k<=6;k++)
for(int i=1;i<=6;i++)
for(int j=1;j<=6;j++)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
ll ans=0;
for(int k=1;k<=m;k++)
{
int x,y;
scanf("%d%d",&x,&y);
int temp=abs(x-y);
for(int i=1;i<=6;i++)
for(int j=1;j<=6;j++)
temp=min(temp,abs(a[i]-x)+dis[i][j]+abs(a[j]-y));
ans=(ans+1ll*k*temp%mod)%mod;
}
printf("%I64d\n",ans);
}
return 0;
}