三次对称群(也叫做对称群 S3S_3)是指所有在三元素集合 {1,2,3}\{1, 2, 3\} 上的置换组成的群。这个群包含6个元素,具体为:
恒等置换 ee:不改变任何元素。
两个交换置换(或叫换位置换) (12)(12), (13)(13), (23)(23):这些置换交换两个元素的位置。
三个循环置换 (123)(123), (132)(132):这些置换在三个元素之间进行循环。
置换的定义
在 S3S_3 中,置换是对集合元素的重新排列。偶置换是指可以通过交换两对元素的偶数次交换得到的置换。
偶置换和奇置换
偶置换:一个置换是偶置换,如果它可以表示为偶数次两元素交换。
奇置换:一个置换是奇置换,如果它可以表示为奇数次两元素交换。
在群 S3S_3 中,偶置换的集合构成一个子群,称为交替群 A3A_3,它包含3个元素。
S3S_3 中的偶置换
我们来具体看一下三次对称群中的偶置换:
恒等置换 ee:恒等置换不改变任何元素,它是偶置换,因为它相当于“交换0对”元素。
交换置换:
(12)(12):交换1和2的位置。它是奇置换,因为它只交换了一对元素,属于奇置换。
(13)(13):交换1和3的位置。它是奇置换,同样只交换了一对元素。
(23)(23):交换2和3的位置。它是奇置换。
循环置换:
(123)(123):这个置换将1映射到2,2映射到3,3映射到1。这个置换是偶置换,因为它可以表示为两个交换:(12)(23)(12)(23)。
(132)(132):这个置换将1映射到3,3映射到2,2映射到1。它同样是偶置换,因为它可以表示为两个交换:(13)(23)(13)(23)。
例子分析
假设我们要计算某个置换是偶置换还是奇置换,或者要找出偶置换组成的群。
计算 (123)(123) 是否是偶置换:
(123)(123) 通过交换 (12)(12) 和 (23)(23) 得到,可以看作是偶数次交换。所以它是偶置换。
计算 (12)∘(13)(12) \circ (13) 的置换结果:
(12)∘(13)(12) \circ (13) 先进行 (13)(13) 置换,再进行 (12)(12) 置换。我们逐步操作:
(13)(13) 将1变为3,3变为1,2保持不变。
接着 (12)(12) 将3变为3,1变为2,2变为1。
结果是 (132)(132),它是偶置换。
总结
三次对称群 S3S_3 包含6个元素,其中3个是偶置换(ee, (123)(123), (132)(132)),3个是奇置换((12)(12), (13)(13), (23)(23))。
偶置换是可以通过偶数次两元素交换得到的置换,而奇置换是奇数次交换得到的置换。
偶置换组成的子群是 A3A_3,包含3个偶置换元素。