智能车牌识别系统的设计与实现 (案例分析)-附源码

 摘 要

智能车牌识别系统是采用车牌识别技术做为基础,应用与停车场、高速路口、收费通道等场所的车辆管理系统。车牌识别技术(Vehicle License PlateRecognition,VLPR)是指能够检测到受监控路面的车辆并自动提取车辆车牌信息(含汉字字符、英文字母、阿拉伯数字及号牌颜色)进行处理的技术。车牌识别是现代智能交通系统中的重要组成部分之一,应用十分广泛。它以数字图像处理、模式识别、计算机视觉等技术为基础,对摄像机所拍摄的车辆图像或者视频序列进行分析,得到每一辆汽车唯一的车牌号码,从而完成识别过程。通过一些后续处理手段可以实现停车场收费管理,交通流量控制指标测量,车辆定位,汽车防盗,高速公路超速自动化监管、闯红灯电子警察、公路收费站等等功能。对于维护交通安全和城市治安,防止交通堵塞,实现交通自动化管理有着现实的意义。

关键词:智能车牌识别、车辆车牌信息、图像处理

Design and Implementation of an Intelligent License Plate Recognition System

Abstract

The intelligent license plate recognition system is based on license plate recognition technology and applied to vehicle management systems in parking lots, highway intersections, toll channels, and other places. Vehicle License Plate Recognition (VLPR) technology refers to the ability to detect vehicles on the monitored road surface and automatically extract vehicle license plate information (including Chinese characters, English letters, Arabic numerals, and license plate color) for processing. License plate recognition is one of the important components in modern intelligent transportation systems and is widely used. It is based on technologies such as digital image processing, pattern recognition, and computer vision, analyzing vehicle images or video sequences captured by cameras to obtain a unique license plate number for each vehicle, thus completing the recognition process. Through some follow-up processing methods, functions such as parking lot fee management, traffic flow control index measurement, vehicle positioning, car theft prevention, automatic supervision of highway speeding, electronic police for running red lights, and highway toll stations can be achieved. It has practical significance for maintaining traffic safety and urban security, preventing traffic congestion, and achieving automated traffic management.

Keywords: intelligent license plate recognition, vehicle license plate information, image processing

目  录

第1章 绪论

1.1 研究背景

1.2 开发现状

1.3 主要工作及论文结构

第2章 相关技术介绍

2.1 HTTP协议

2.2 HTML网页技术

2.3 B/S结构

2.4 Python脚本语言

2.5 MySQL数据库

2.6 Apache简介

第3章 系统分析

3.1 可行性分析

3.1.1 技术可行性

3.1.2 经济可行性

3.1.3 社会可行性

3.2 系统功能需求

3.3 系统性能需求

3.4 数据流程分析

第4章 系统设计

4.1 系统架构设计

4.2 总体结构设计

第5章 系统实现

5.1 数据库连接模块的实现

5.2 登录模块的实现

5.3 用户模块的实现

5.3.1 注册模块的实现

5.3.2 车牌识别模块的实现

第6章 系统测试

6.1 测试环境

6.2 测试目标

6.3 功能测试

6.4 测试结果

第7章 总结与展望

参考文献

致谢

第1章 绪论

1.1 研究背景

随着社会经济的发展、汽车数量急剧增加,对交通控制、安全管理、收费管理的要求也日益提高,运用电子信息技术实现安全、高效的智能交通成为交通管理的主要发展方向。汽车车牌号码是车辆的唯一“身份”标识,智能车牌识别系统可以在汽车不作任何改动的情况下实现汽车“身份”的自动登记及验证,这项技术已经应用于公路收费、停车管理、交通诱导、交通执法、公路稽查、车辆调度、车辆检测等各种场合。

采用车牌识别技术,既可以减少停车场的管理成本,又改善了传统方式管理的停车场中,用户进出停车场耗时、耗力的不良体验。因此,在停车场中采用车牌识别技术具有较大的研究价值和市场空间。本文对车牌识别中的图像预处理、车牌定位、车牌字符分割、车牌字符识别等相关算法进行了分析与仿真实验。在车牌定位部分,首先对基于Sobel边缘检测的车牌定位方法以及基于颜色定位的车牌定位方法分别进行了仿真实验,最终采用通过Sobel边缘检测进行粗定位,在经过颜色判定进行二次定位的车牌定位方法。在车牌字符分割部分,采用水平投影分析去除车牌水平边框,再通过垂直投影分析结合车牌字符编码先验知识在垂直方向对车牌进行单字符分割。在生牌子符识别部分,分别对基于SVM和基于ResNet18的识别方法进行了分析与对比。在样本量较低的情况下,传统的SVM分类识别方法识别准确率更高。最终采用SVM分类识别方法分别对汉字、英文字母和数字构建基于HOG特征的SVM分类器,完成车牌字符的识别。

智能车牌识别系统本着安全性、可靠性、实用性、开放性、可扩充性、高效性、智能化的指导思想和分布式结构进行设计,规划好系统硬件和软件功能模块的分工和协调。

1.2 开发现状

近年来,随着社会的进步与发展,我国的汽车量也在迅速增加,城市交通的瓶颈不仅仅体现在道路交通的拥挤上,同时也体现在传统的智能车牌识别效率与安全性大大滞后于社会,给人们的生活带来了非常大的不便。尤其,随着我国汽车工业的迅猛发展,停车场作为交通设施的一个组成部分,因为交通运输的繁忙与不断发展,人们对停车场的管理要求也不断的提高,希望管理能够达到快捷、方便、安全的效果。根据停车场规模的不同,对其管理的模式也有各有不同,管理者需根据自身的条件,选择相适应的管理程序,智能车牌识别系统于是应运而生。智能车牌识别系统本着可扩充性、可靠性、智能化、安全性、高效性、实用性、开放性的指导思想与分布式结构进行设计,并规划好系统硬件与软件功能模块的分工、协调。

智能车牌识别系统说到底也就是对车牌识别信息的数据化并进行统一系统化的管理,离不开数据库的操作与前台web页面的显示,我此次用到的就是这样的技术。

智能车牌识别系统的几种应用方式:

1、监测报警

对于纳入“黑名单”的车辆,例如:被通缉或挂失的车辆、欠交费车辆、未年检车辆、肇事逃逸及违章车辆等,只需将其车牌号码输入到应用系统中,智能车牌识别设备安装于指定的路口、卡口或由执法人员随时携带按需要放置,系统将识读所有通过车辆的车牌号码并与系统中的“黑名单”比对,一旦发现指定车辆立刻发出报警信息。系统可以全天不间断工作、不会疲劳、错误率极低;可以适应高速行驶的车辆;可以在车辆行使过程中完成任务不影响正常交通;整个监视过程中司机也不会觉察、保密性高。应用这种系统将极大地提高执法效率。

2、超速违章处罚

车牌识别技术结合测速设备可以用于车辆超速违章处罚,一般用于高速公路。具体应用是:在路上设置测速监测点,抓拍超速的车辆并识别车牌号码,将违章车辆的车牌号码及图片发往各出口;在各出口设置处罚点,用智能车牌识别设备识别通过车辆并将号码与已经收到的超速车辆的号码比对,一旦号码相同即启动警示设备通知执法人员处理。与传统的超速监测方式相比,这种应用可以节省警力,降低执法人员的工作强度,而且安全、高效、隐蔽,司机需时刻提醒自己不能超速,极大地减少了因超速引发的事故。

3、车辆出入管理

将智能车牌识别设备安装于出入口,记录车辆的车牌号码、出入时间,并与自动门、栏杆机的控制设备结合,实现车辆的自动管理。应用于停车场可以实现自动计时收费,也可以自动计算可用车位数量并给出提示,实现停车收费自动管理节省人力、提高效率。应用于智能小区可以自动判别驶入车辆是否属于本小区,对非内部车辆实现自动计时收费。在一些单位这种应用还可以同车辆调度系统相结合,自动地、客观地记录本单位车辆的出车情况。

4、自动放行

将指定的车牌信息输入系统,系统自动地识读经过车辆的车牌并查询内部数据库。对于需要自动放行的车辆系统驱动电子门或栏杆机让其通过,对于其它车辆系统会给出警示,由值勤人员处理。可用于特殊单位(如军事管理区、保密单位、重点保护单位等)、路桥收费卡口、高级住宅区等。

5、高速公路收费管理

在高速路的各个出入口安装智能车牌识别设备,车辆驶入时识别车辆车牌将入口资料存入收费系统,车辆到达出口时再次识别其车牌并根据车牌信息调用入口资料,结合出入口资料实现收费管理。这种应用可以实现自动计费并可防止作弊,避免了应收款的流失。

目前,高速公路已开始实施联网收费,随着联网范围的扩大,不同车型的收费差额也越来越高,司机利用现有收费系统的漏洞通过中途换卡进行逃费的问题将越来越突出,利用车牌识别技术是解决此类问题的根本方法。

6、计算车辆旅行时间

在交通管理系统中可以将车辆在某条道路的平均旅行时间作为判断该道路拥堵状况的一个参数。安装智能车牌识别设备于道路的起止点,识读所有通过车辆并将车牌号码传回交通指挥中心,指挥中心的管理系统根据这些结果就可计算出车辆平均旅行时间。

7、车牌号码自动登记

交通监管部门每天都要处理大量的违章车辆图片,一般由人工辨识车牌号码再输入管理系统,这种方式工作量大、容易疲劳误判。采用自动识别可以减少工作强度能够大幅度提高处理速度和效率。这种功能可用于电子警察系统、道路监控系统等。

智能车牌识别系统将摄像机在入口拍摄的车辆车牌号码图象自动识别并转换成数字信号。做到一卡一车,车牌识别的优势在于可以把卡和车对应起来,使管理提高一个档次,卡和车的对应的优点在于长租卡须和车配合使用,杜绝一卡多车使用的漏洞,提高物业管理的效益;同时自动比对进出车辆,防止偷盗事件的发生。升级后的摄像系统可以采集更清晰的图片,作为档案保存,可以为一些纠纷提供有力的证据。方便了管理人员在车辆出场时进行比对,大大增强了系统的安全性。

汽车车牌自动识别技术是一项利用车辆的动态视频或静态图像进行车牌号码、车牌颜色自动识别的模式识别技术。通过对图像的采集和处理,完成车牌自动识别功能,能从一幅图像中自动提取车牌图像,自动分割字符,进而对字符进行识别.其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机)等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些车牌识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。车牌识别单元对图像进行处理,定位出车牌位置,再将车牌中的字符分割出来进行识别,然后组成车牌号码输出。

1.3 主要工作及论文结构

本文的主要工作是研究如何将计算机和信息管理进行有机结合,从而利用Python语言以及MySQL数据库技术在Dreamweaver中实现了系统的功能模块,切实的开发出一套贴近智能车牌识别的实际,有效管理停车场的系统。

论文结构如下:

第一章绪论:主要对智能车牌识别系统的开发背景,研究现状,目的,及意义进行了分析。

第二章开发技术及软件:主要把系统开发工具进行介绍,另外讲解开发系统所用到的一些特殊功能技术。

第三章系统分析:主要是对智能车牌识别系统进行需求分析,以及对其数据流程与功能进行分析。

第四章系统设计:主要根据系统需求对系统的设计进行介绍,以及对数据的开发与功能模块设计的过程。

第五章系统实现:本章主要结合系统界面截图,介绍了系统各个功能实现的结果。

第六章系统测试:本章系统进行功能模块的测试,撰写测试用例,确保系统各大功能准确无误。

第七章总结与展望:对整个论文的研究内容进行总结,概括整个论文的特点,指出不足之处,为下步深究指明方向。

第2章 相关技术介绍

2.1 HTTP协议

超文本传输协议(HTTP)作为协作式与分布式的通信协议,其以万维网交换信息作为前提条件。HTTP为IEIF的国际化标准指标,在制定相关标准与实现内,W3C积极参与其中,同时发挥着不可替代的作用。其能够借助超文本标记语言,将文档在服务器与浏览器之间相互传输。HTML作为构架文档的标记语言,这些文档内将包括有关信息的链接,用户仅需要点击其中一个链接就能够访问多媒体对象与图像,同时获得该链接项所具有的附加信息[1][2]。

2.2 HTML网页技术

HTML是一种制作网页的常用语言,它一般是用于制作静态页面。它的命令是可以体现文字信息、链接信息、图形信息和表格信息等等。现在它被大众普遍接受广泛应用在网络上[3]。

2.3 B/S结构

在系统的开发上采用了B/S结构,在B/S结构中,统一采用浏览器,而不需要去开发任何的用户界面,Web浏览器向处理它的Web服务器发送请求,并一步一步地将处理结果返回给客户端。B/S结构主要采用了各种脚本语言和ActiveX技术,降低了系统的开发难度并简化了系统维护以及使用[4]。

B/S结构有如下特点:B/S结构建立在广域网上,不需要专门为其配置硬件环境,比C/S结构的适应范围更强;由于其基于广域网,所以其对安全的控制能力相对较弱;B/S的多种结构要求构造相对独立的函数,这样才能可以更好地重用;B/S结构组成简单,便于对个别构件进行更换,降低了系统的维护成本B/S信息流向与C/S不同,B/S信息流向可变化[5]。

2.4 Python脚本语言

(1)Python 结合 C、Java、Perl 以及自创的新语法形成了自己独特的语法[6]。

(2)Python可以更快速的执行动态网页,当然这只是相对于CGI或者Perl来说,Python可以在HTML文档中嵌入程序,而且去执行,另外Python能够实现CGI的所有功能,因此说明Python具有很强大的功能。

(3)大部分当下流行的数据库和操作系统Python语言都能够支持。

(4)Python语言的最重要特点就是可以让C、C++进行扩展[7]。

2.5 MySQL数据库

MySQL 经过多次的更新,功能层面已经非常的丰富和完善了,从MySQL4版本到5版本进行了比较大的更新,在商业的实际使用中取得了很好的实际应用效果。最新版本的MySQL支持对信息的压缩,同时还能进行加密能更好的满足对信息安全性的需求。同时经过系统的多次更新,数据库自身的镜像功能也得到了很大的增强,运行的流畅度和易用性方面有了不小的进步,驱动的使用和创建也更加的高效快捷。最大的变动还是进行了空间信息的显示优化,能更加方便的在应用地图上进行坐标的标注和运算。强大的备份功能也保证了用户使用的过程会更加安心,同时支持的Office特性还支持用户的自行安装和使用。在信息的显示形式上也进行了不小的更新,增加了两个非常使用的显示区,一个是信息区,对表格和文字进行了分类处理,界面的显示更加清爽和具体。第二是仪表的信息控件,能在仪表信息区进行信息的显示,同时还能进行多个信息的比对,为用户的实际使用带来了很大的便捷[8][9]。

针对本文中设计的智能车牌识别系统在实际的实现过程中,最终选择MySQL数据库的主要原因在于在企业的应用系统应用及开发的过程中会存在大量的数据库比较频繁的操作,而且数据的安全性要求也是非常的高。综合这些因素,最终选择安全性系数比较高的MySQL来对智能车牌识别系统后台数据进行存储操作[10][11]。

2.6 Apache简介

Apache是开发源代码,使用者可根据个人习惯、系统的需求对Apache进行配置;另外对于系统的发布和运行是非常简单的[10],开发人员只需要在开发工具中导入Apache,服务器的配置就算完成了;这是非常适合Python程序的。对于程序人员开发程序经常可能会遇到乱码的问题,而使用Apache作为服务器,只需要在Apache的安装目录下找到配置文件夹conf下的服务器配置文件server.xml,打开后改动端口号为8080的接收环节与请求处理环节的连接器Connector为相对应的编码,运行项目后,就不会出现中文乱码问题。本系统的设计和实现编码使用的是UTF-8,所以需要在端口号为8080的连接器中设置编URIEncoding="UTF-8"[12] [13]。

第3章 系统分析

3.1 可行性分析

开发任何一个系统,都要对其可行性进行分析,对其时间和资源上的限制进行考虑,这样可以减少系统开发的风险。同时,分析之后不仅能够合理的运用人力,还能在各方面资源的消耗上得到节省。下面就对技术、经济和社会三个方面来介绍。

3.1.1 技术可行性

技术可行性主要考虑当前项目所用的技术是否能够符合,在设备上是否能够满足,及各种辅助工具是否提供帮助。本系统用的是Python开发语言,调试相对简单,当前的计算机硬件配置也完全能满足开发的需求,因此在技术上是绝对可行的。软件方面:由于软件的开发平台成熟可行,它们速度快、容量大、可靠性能高、价格低,完全能满足系统的需求。采用Python编程语言,已无技术上的问题。

3.1.2 经济可行性

系统所采用的Pycharm开发平台和MySQL后端数据库均为免费开发工具。故开发成本主要集中在后期的推广及系统维护上。相对于成本较高的C/S模式,也是选用了成本较低的B/S模式,所以经济上几乎没任何问题。

3.1.3 社会可行性

本系统是自行开发的系统,以方便高效管理停车场为出发点,是具有实际意义的系统,开发的环境软件和用到的数据库也都是开源代码,不存在侵权等问题,所以在社会方面也是可行的。

3.2 系统功能需求

用户用例图如下所示。

图3-1 用户用例图

3.3 系统性能需求

评判一个系统好坏的一项重要指标就是性能,下面是对此系统的一些性能进行阐述。

1.系统的安全性和稳定性: 智能车牌识别系统在管理权限上有着严格的控制,即想登录此平台进行操作,则必须要有操作权限,没有权限的用户是不可能登录平台查看任何的信息和数据,从而确保了系统的安全性。

2.数据的完整性和准确性:第一个是各项记录信息的完整性,信息记录的内容可以为空;第二个是各项信息数据之间相互联系的准确性;第三个是数据在不同记录信息的一致性

3.用户操作系统简单方便

在系统开发中按照“简单易用”的原则,能够使用户对系统的使用一目了然,既能保证用户使用,同时又能保证维护人员方便维护。

3.4 数据流程分析

在分析了系统的业务流程之后,就要分析系统的数据流,为后面设计系统的数据库做好基础。这里主要利用数据流程图来说明数据流程。数据流程图是一个图示工具,容易理解,容易在开发和用户方之间进行交流,以及在开发组织内部交流。因此数据流程图作为一种模型工具已经广泛使用在软件工程的实践中。

第4章 系统设计

4.1 系统架构设计

MVC 是指 Model、View 和 Controller,翻译成中文分别是模型层、视图层和控制层。MVC 模式是一种设计模式,它强制性的把应用程序的输入、输出和处理全部分开,将其分为三个核心部分,这三个部分分别有不同的功能。

图4-1系统架构图

视图层视图是指被用户所看到的并且能够与之进行交互的界面。视图可以向用户展示相关的数据,并接收用户输入的数据,但对用户数据不进行任何实际业务操作处理。

模型层通过控制层来处理视图层传递的数据,同一个模型可以给不同的视图提供数据,也可以被不同的视图重复使用。由于 Model 的主要内容是数据、方法和行为,其也是 MVC 中逻辑最为复杂,代码量最多的部分,其中包含了许多应用中需要用到的业务逻辑,因此模型层的开发也变得尤为重要,后期一般不会对模型层进行大规模改动,也是 MVC 中最稳定的部分。

控制层主要负责视图层和模型层之间的数据传输和处理请求操作。当用户通过视图发送数据和请求时,控制层可以接收请求和数据并决定调用哪些模型、通过模型的哪些操作来处理数据和请求,处理完成后,控制层再将数据返回给相应的视图。

4.2 总体结构设计

根据对系统的功能进行分析可以总结智能车牌识别系统的具体功能模块包括下面的几个主要的功能模块:该系统主要从两大模块进行设计的,首先就是用户参与操作需要的模块,此外还需要有管理员用到的模块,两者之间不是互相独立的,他们之间有着密切的联系,同数据库表中的数据连接起来进行操作。每个模块访问相同的数据库,但访问的表不同。系统的各个功能模块是根据所收集的资料研究得到的。在以上分析功能的基础上,系统模块分为多个模块。用户含有的功能有注册,登录,信息搜索,首页、原始图、选择图片、开始检测、保存结果、检查结果等功能,管理员含有的功能有修改密码,用户管理车牌识别等功能。

系统的功能结构图如下图所示。

图4-2系统功能结构图

第5章 系统实现

5.1 数据库连接模块的实现

从web系统查询数据的根本的查询步骤:

Step1: 进行检查并且过滤来自用户的系统数据;

Step2: 成立起一个合适的数据库进行连接;

Step3: 进行查询系统数据库;

Step4: 获得查询的结构;

Step5: 把查询的结果展示给用户。

Step6: 数据库连接断开,释放资源。

数据库连接原理如下图所示。

图5-1数据库连接原理

5.2 登录模块的实现

为确保系统安全性,系统操作员只有在登录界面输入正确的用户名、密码、权限以及验证码,单击“登录”按钮后才能够进入本系统的主界面。

用户登录流程图如下所示。

图5-2用户登录流程图

5.3 用户模块的实现

5.3.1 注册模块的实现

用户输入用户名、密码、电话、姓名等必填信息后,点击注册按钮完成用户的注册。

用户注册流程图如下所示。

图5-4用户注册流程图

5.3.2 牌识别模块的实现

摄像机在实际应用中获得的图像可能因天气、光照条件以及传感器自身的噪声影响图像的质量。此外,还有可能出现车牌遮挡、车身颠簸造成的拍摄图像抖动、车辆灯光照射造成过曝等不确定因素。因此,通常需要先对图像进行预处理,车牌识别流程图如下所示。

图5-6车牌识别流程图

车位识别界面如图所示。

图5-7车牌识别界面

第6章 系统测试

6.1 测试环境

1、服务器端

操作系统:Windows 7

Web服务器:Apache2.4.7

数据库:MySQL

开发语言:Python

2、客户端

浏览器:Internet Explorer10

界面布局:DIV+CSS

分辨率:最佳效果1027*768以上像素

3、开发工具

Dreamweaver

Pycharm

6.2 测试目标

系统测试是用于检查软件的质量、性能、可靠性等是否符合用户需求。一套严谨的、规范的、完善的测试过程将大大提高软件的质量、可信度、可靠性,降低软件的出错率,降低用户风险系数。通过在计算机上对系统进行测试试验并从中发现此系统中存在的问题和错误然后加以修改,使之更加符合用户需求。

1.测试的目的是通过测试来发现程序在执行过程中的错误的过程。

2.好的测试方案是可以检验出还未被发现的错误的方案。

3.好的测试是发现了到目前为止还未被发现的错误的测试。

4.该系统能够完成首页、原始图、选择图片、开始检测、保存结果、检查结果等功能,做到所开发的系统操作简单,尽量使系统操作不受用户对电脑知识水平的限制。

6.3 功能测试

下表是系统登录功能测试用例,检测了用户名和密码的不同的输入情况,观察系统的响应情况。得出该功能达到了设计目标。

表6-1 系统登录功能测试用例

功能描述

用于系统登录

测试目的

检测登录时的合法性检查

测试数据以及操作

预期结果

实际结果

输入的用户名和密码带有非法字符

提示用户名或者密码错误

与预期结果一致

输入的用户名或者密码为空

提示用户名或者密码错误

与预期结果一致

输入的用户名和密码不存在

提示用户名或者密码错误

与预期结果一致

输入正确的用户名和密码

登录成功

与预期结果一致

6.4 测试结果

经过对一系列测试结果的有效分析,本平台开发系统符合用户的要求和需求。所有的基本功能相对齐全,操作起来简单方便,测试系统性能良好,作为大众化系统使用是比较值得推广宣传的。

第7章 总结与展望

本研究针对智能车牌识别系统地需求建模,数据建模及过程建模分析设计并实现智能车牌识别系统的过程。给出系统应用架构并分析优劣势,通过功能分解图,系统组件图描述功能需求。设计建立了数据库,给出系统关键数据结构的定义。通过类关系图描述组件间的协作关系,给出各个类的定义方法。通过描述每一个类的字段,属性及方法实现智能车牌识别系统的前后端代码。最终给出系统集成整合方法,完成智能车牌识别系统地设计与实现。

在此项目的开发中,先要按照产品经理做出的产品模型铺出大体的页面,并在其中找好页面的逻辑关系,并且中途总结一些页面上的问题重新反馈给产品经理,当静态页面的搭建的大体已经完善时,就需要和负责后台开发的技术开发者联系,来接好前后台的数据接口,可以让后台的信息在前台显示出来,在这个项目实现中,不光明白了前端开发和产品经理的联系,也明白了后台在整个系统中起到了什么作用,因为前后台的连接,用户可以对系统进行操作,可以在输入自己的相关信息后,通过后台加工,完成对数据库的查找、修改、添加,而理解了这些关系与实现的方法后。再去完善整个系统的功能就更加清晰与简单了。此次的项目它涉及了前台与后台系统的搭建,在学校所学的知识基础上,此次的项目,让我对于一个系统的前端开发,以及后台的作用都有了一个更深切的认知。

参考文献

[1]周春吟.基于Python语言图形用户界面设计的研究[J].科学技术创新,2022(35):81-85.

[2]方磊.Python语言程序设计支架式实训教学探析[J].湖北文理学院学报,2022,43(11):83-88.

[3]邓洁英.Python语言编程在计算机理论教学上的应用研究[J].现代信息科技,2022,6(21):185-187+191.DOI:10.19850/j.cnki.2096-4706.2022.21.045.

[4]盛冠群,赵美林,刘忠途,郑悦林,姜艳静,汤婧.人工智能背景下“Python语言程序设计”课程改革探索[J].科技风,2022(30):83-85.DOI:10.19392/j.cnki.1671-7341.202230028.

[5]王子睿,肖忠林,常皓淇,李垚,甘永莹.基于Django的智能货梯系统设计[J].信息与电脑(理论版),2022,34(19):26-28.

[6]王景.基于Python语言的数据表文件批量处理技术[J].信息技术与信息化,2022(09):66-69.

[7]华厚强,康佳春.基于Python的校园交易平台设计[J].现代计算机,2022,28(15):105-111.

[8]王军.基于Django的高校后勤库存管理系统设计实现[J].计算机时代,2022(07):59-61+65.DOI:10.16644/j.cnki.cn33-1094/tp.2022.07.015.

[9]Yan Qilin. Real-Time Analysis of Youth Emotion Based on Python Language and Smart Sensor Network[J]. Mobile Information Systems,2022,2022.

[10]封居强,樊丽江,韩芳.基于数据融合的智能车牌识别系统设计与实现[J].九江学院学报(自然科学版),2022,37(01):45-49.DOI:10.19717/j.cnki.jjun.2022.01.010.

[11]Mathieu Didier. Erratum: Modeling Sensitivities of Energetic Materials using the Python Language and Libraries[J]. Propellants, Explosives, Pyrotechnics,2022,47(2).

[12]孙建军,李琪,吕强.浅析Web开发工具Django的MVC架构[J].品牌与标准化,2021(06):105-106+109.

[13]蔡自伟.基于Django框架的量化交易系统设计[J].山西大同大学学报(自然科学版),2021,37(05):39-42.

[14]邱红丽,张舒雅.基于Django框架的web项目开发研究[J].科学技术创新,2021(27):97-98.

[15]程琳,樊江涛,李龙,冷尊淼,李田太郎.智能车牌识别系统设计与实现[J].数字技术与应用,2021,39(05):169-171.DOI:10.19695/j.cnki.cn12-1369.2021.05.55.

[16]孙曜. 智能停车场信息管理系统设计与实现[D].扬州大学,2020.DOI:10.27441/d.cnki.gyzdu.2020.002477.

[17]黄大维. 智能车牌识别系统设计研究[C]//.2020万知科学发展论坛论文集(智慧工程二).,2020:1022-1031.DOI:10.26914/c.cnkihy.2020.014187.

[18]王华文, 智能车牌识别系统软件. 安徽省,安徽德顺智能科技有限公司,2020-05-21.

[19]孙燕.智能车牌识别系统研究[J].技术与市场,2019,26(12):223+225.

[20]张健,刘志成.一种智能车牌识别系统的设计[J].山西电子技术,2019(03):39-41+43.

致 谢

在此论文完成之际,感谢我的指导老师。在指导老师的网页设计课上,当时我学到了很多东西,这对于我实习过程中也打了一定的基础,而且指导老师对于我的设计也提出许多建议,并予以悉心的指导,对于一些细小的问题都耐心的指导我去完善,授予我写论文的心得,时常的鼓励我,另外感谢教导我完善此项目的前端同学,对于这个项目,我是边学习边实现完成的,有许多东西开始并不是很明白,但前端开发的同学非常耐心的引导我去将这个项目完成,在系统的后端开发中,所用到的后台开发技术也时常会给我讲解,助于我更好的将论文完成,在此对帮助到我的同学和一直予以教导的指导老师致以衷心的感谢,祝事业有成。

点赞+收藏+关注  →私信领取本源代码、数据库

关注博主下篇更精彩
一键三连!!!
一键三连!!!
一键三连!!!
感谢一键三连!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值