时间序列预测的深度学习:电力负荷案例 DTS -深度时间序列预测 源代码,代码按照高水平文章复现,保证正确
深度学习模型于电力负荷预测, 深度学习体系结构对短期预测,在通过在两个数据集上回顾和实验评估电力负荷预测,前馈和递归神经网络、序列到序列模型、时域卷积神经网络以及架构变量.
实验评估了最相关的深度学习模型应用于短期负荷预测问题。
重点介绍了三种主要的模型,即递归神经网络、序列对序列体系结构和最近开发的时间卷积神经网络。
智能电网,电力负荷预测,时间序列预测,深度学习,循环神经网络,lstm, gru,时间卷积神经网络,序列对序列模型
ID:16200636446603365
SourseCode
深度学习模型在时间序列预测中的应用一直备受关注。特别是在电力负荷预测领域,深度学习的体系结构已经被广泛应用于短期预测。在本文中,我们通过回顾和实验评估了不同深度学习模型在两个数据集上的电力负荷预测能力,其中包括前馈神经网络、递归神经网络、序列对序列模型和最近开发的时域卷积神经网络。
在智能电网的背景下,电力负荷预测是一项非常重要的任务。通过准确地预测电力负荷,能够帮助电网管理者做出合理的决策,优化电力系统的运行和管理。在过去的几十年里,传统的统计模型被广泛应用于电力负荷预测,然而,由于其对数据特征的线性假设以及对高阶非线性关系的无法捕捉,传统模型的预测准确度受到了限制。
而深度学习模型通过多层次非线性变换和大量可调节参数的学习,在时间序列预测问题上取得了显著的成果。在电力负荷预测中,特别是短期预测,深度学习的优势得到了充分的发挥。通过在两个真实的电力负荷数据集上进行实验评估,我们验证了深度学习模型在短期负荷预测问题上的有效性。
在我们的实验中,我们重点介绍了三种主要的深度学习模型,它们分别是递归神经网络(RNNs)、序列对序列体系结构(Seq2Seq)和最近开发的时间卷积神经网络(TCNs)。递归神经网络是最早应用于时间序列预测的深度学习模型之一,它通过在网络中引入循环连接来处理序列数据的依赖性。序列对序列体系结构则进一步推动了时间序列预测的发展,它可以将输入序列映射为输出序列,极大地增强了模型的表达能力。最近,时间卷积神经网络的提出使得在时间序列预测问题上能够更好地捕捉长期依赖关系。
当然,除了这三种模型外,还有其他一些深度学习模型也可以应用于电力负荷预测问题,比如长短时记忆网络(LSTM)、门控循环单元(GRU)等。这些模型在不同数据集上的性能也是我们实验的一部分。
总而言之,本文通过对不同深度学习模型在电力负荷预测问题上的应用进行实验评估,验证了深度学习在短期负荷预测中的有效性。我们重点介绍了递归神经网络、序列对序列体系结构和时间卷积神经网络这三种主要模型。这些模型都能够充分利用时间序列数据的特征,提高预测准确度,并为智能电网的电力管理提供有力支持。
关键词:智能电网,电力负荷预测,时间序列预测,深度学习,循环神经网络,LSTM,GRU,时间卷积神经网络,序列对序列模型
相关的代码,程序地址如下:http://imgcs.cn/636446603365.html