迪科斯彻算法 Dijkstra算法


From: http://zh.wikipedia.org/zh-cn/Dijkstra%E7%AE%97%E6%B3%95


戴克斯特拉算法英语Dijkstra's algorithm)是由荷兰计算机科学家艾兹赫尔·戴克斯特拉(Edsger Wybe Dijkstra)发明的。算法解决的是有向图中单个源点到其他顶点的最短路径问题。举例来说,如果图中的顶点表示城市,而边上的权重表示著城市间开车行经的距离,该算法可以用来找到两个城市之间的最短路径。

该算法的输入包含了一个有权重的有向图 G,以及G中的一个来源顶点 S。我们以 V 表示 G 中所有顶点的集合。每一个图中的,都是两个顶点所形成的有序元素对。(u, v) 表示从顶点 uv 有路径相连。我们以 E 所有边的集合,而边的权重则由权重函数 w: E → [0, ∞] 定义。因此,w(u, v) 就是从顶点 u 到顶点 v 的非负权重(weight)。边的权重可以想像成两个顶点之间的距离。任两点间路径的权重,就是该路径上所有边的权重总和。已知有 V 中有顶点 st,Dijkstra 算法可以找到 st 的最低权重路径(例如,最短路径)。这个算法也可以在一个图中,找到从一个顶点 s 到任何其他顶点的最短路径。

目录

算法描述

这个算法是通过为每个顶点 v 保留目前为止所找到的从s到v的最短路径来工作的。初始时,原点 s 的路径长度值被赋为 0 (d[s] = 0),若存在能直接到达的边(s,m),则把d[m]设为w(s,m),同时把所有其他(s不能直接到达的)顶点的路径长度设为无穷大,即表示我们不知道任何通向这些顶点的路径(对于 V 中所有顶点 vs 和上述 md[v] = ∞)。当算法退出时,d[v] 中存储的便是从 sv 的最短路径,或者如果路径不存在的话是无穷大。 Dijkstra 算法的基础操作是边的拓展:如果存在一条从 uv 的边,那么从 sv 的最短路径可以通过将边(u, v)添加到尾部来拓展一条从 s 到 u 的路径。这条路径的长度是 d[u] + w(u, v)。如果这个值比目前已知的 d[v] 的值要小,我们可以用新值来替代当前 d[v] 中的值。拓展边的操作一直运行到所有的 d[v] 都代表从 s 到 v 最短路径的花费。这个算法经过组织因而当 d[u] 达到它最终的值的时候每条边(u, v)都只被拓展一次。

算法维护两个顶点集 S 和 Q。集合 S 保留了我们已知的所有 d[v] 的值已经是最短路径的值顶点,而集合 Q 则保留其他所有顶点。集合S初始状态为空,而后每一步都有一个顶点从 Q 移动到 S。这个被选择的顶点是 Q 中拥有最小的 d[u] 值的顶点。当一个顶点 u 从 Q 中转移到了 S 中,算法对每条外接边 (u, v) 进行拓展。

伪代码

在下面的算法中,u := Extract_Min(Q) 在顶点集合 Q 中搜索有最小的 d[u] 值的顶点 u。这个顶点被从集合 Q 中删除并返回给用户。

 1  function Dijkstra(G, w, s)
 2     for each vertex v in V[G]                        // 初始化
 3           d[v] := infinity                                 // 将各点的已知最短距离先设置成无穷大
 4           previous[v] := undefined                         // 各点的已知最短路径上的前趋都未知
 5     d[s] := 0                                              // 因为出发点到出发点间不需移动任何距离,所以可以直接将s到s的最小距离设为0
 6     S := empty set
 7     Q := set of all vertices
 8     while Q is not an empty set                      // Dijkstra演算法主體
 9           u := Extract_Min(Q)
10           S.append(u)
11           for each edge outgoing from u as (u,v)
12                  if d[v] > d[u] + w(u,v)             // 拓展边(u,v)。w(u,v)为从u到v的路径长度。
13                        d[v] := d[u] + w(u,v)               // 更新路径长度到更小的那个和值。
14                        previous[v] := u                    // 记录前趋顶点

如果我们只对在 st 之间查找一条最短路径的话,我们可以在第9行添加条件如果满足 u = t 的话终止程序。

通过推导可知,为了记录最佳路径的轨迹,我们只需记录该路径上每个点的前趋,即可通过迭代来回溯出 st 的最短路径(当然,使用后继节点来存储亦可。但那需要修改代码):

1 s := empty sequence 
2 u := t
3 while defined u                                        
4       insert u to the beginning of S
5       u := previous[u]      //previous数组即为上文中的p

现在串行 S 就是从 st 的最短路径的顶点集。

时间复杂度

我们可以用大O符号将该算法的运行时间表示为边数 m 和顶点数 n 的函数。

Dijkstra 算法最简单的实现方法是用一个链表或者数组来存储所有顶点的集合 Q,所以搜索 Q 中最小元素的运算(Extract-Min(Q))只需要线性搜索 Q 中的所有元素。这样的话算法的运行时间是 O(n2)。

对于边数少于 n2稀疏图来说,我们可以用邻接表来更有效的实现该算法。同时需要将一个二叉堆或者斐波纳契堆用作优先队列来查找最小的顶点(Extract-Min)。当用到二叉堆的时候,算法所需的时间为O((m + n)log n),斐波纳契堆能稍微提高一些性能,让算法运行时间达到O(m + n log n)。然而,使用斐波纳契堆进行编程,常常会由于算法常数过大而导致速度没有显著提高。

相关问题及算法

原本的该算法还能够加以修改以扩充其功能。举例来说,面对一个问题,有时我们可能希望取得数学上的次佳解。为了求得这些次佳解,首先先用原本的该算法求出最佳路径;接下来,我们移除最佳路径中任一段路径,并对剩下来的子集合图再做一次最佳路径计算。对于最佳路径上的每一段路径做一样的操作,我们可以得到许多次佳路径解,将这些路径排序后即为原路径问题的次佳路径解集合。

开放最短路径优先OSPF, Open Shortest Path First)算法是该算法在网络路由中的一个具体实现。

与 Dijkstra 算法不同,Bellman-Ford算法可用于具有负花费边的图,只要图中不存在总花费为负值且从源点 s 可达的环路(如果有这样的环路,则最短路径不存在,因为沿环路循环多次即可无限制的降低总花费)。

与最短路径问题相关最有名的一个问题是旅行商问题(Traveling salesman problem),此类问题要求找出恰好通过所有目标点一次且最终回到原点的最短路径。然而该问题为NP-完全的;换言之,与最短路径问题不同,旅行商问题不太可能具有多项式时间解法。

如果有已知信息可用来估计某一点到目标点的距离,则可改用A*搜索算法,以减小最短路径的搜索范围。


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值