图像噪声


噪声在理论上可以定义为/不可预测, 只能用概率统计方法来描述的随机误差0".

因此,可以将图像噪声看成是多维随机过程, 描述噪声完全可以借用随机过程及其概率密度函数".


数字图像的噪声主要来源于图像的获取和传输过程[.]"图像传感器的工作情况受各种因素影响,

如图像获取中的环境条件和传感元器件自身的质量"图像在传输过程中主要由于所用的传输信道的干扰受到噪声污染".


椒盐噪声

椒盐噪声(salt & pepper noise)是数字图像的一个常见噪声,产生该噪声的算法也比较简单。
椒盐,按我的理解,椒就是黑,盐就是白,椒盐噪声就是在图像上随机出现黑色白色的像素。
那么传入两个参数,分别为黑白像素在图像上所占比例,就可以对图像进行修改。我们可以使用 srand 函数,根据 time 产生一个随机种子(以免每次随机的结果相同),然后使用 rand 函数产生随机数,rand 产生的随机数是 0 到 RAND_MAX 之间的整数,可以通过使用 double (rand ()) / RAND_MAX 产生一个 0 到 1 之间的浮点型。
这样,当这个随机数小于 pepper 时,就把该点调黑,大于 1 – salt 时,就把该点调白,就可以产生随机的椒盐噪声了。
效果如图:

output.bmp


高斯噪声

椒盐噪声相似,高斯噪声(gauss noise)也是数字图像的一个常见噪声,产生该噪声的算法也很简单。
上次说过,椒盐噪声是出现在随机位置、噪点深度基本固定的噪声高斯噪声与其相反,是几乎每个点上都出现噪声、噪点深度随机的噪声。
该噪声效果如下:

output.jpg








四、按概率密度函数分

  这是比较重要的,主要因为引入数学模型,这就有助于运用数学手段去除噪声。

  这一部分内容冈萨雷斯先生的数字图像处理第二版(P176)图文并茂,这里只说粗略介绍.

   a)高斯噪声

   在空间域和频域中,由于高斯噪声在数学上的易处理性,这种噪声(也称为正态噪声)模型经常被用在实践中,

   事实上,这种易处理性非常方便,使高斯模型经常适用于临街情况下。

   b)瑞利噪声

   需注意,距原点的位移和其密度图形的基本形状向右变形的事实。

   瑞利密度对于近似偏移的直方图十分适用。

   c)伽马(爱尔兰)噪声

   d)指数分布噪声

   e)均匀分布噪声

   f)脉冲噪声(椒盐噪声)

   双极脉冲噪声也称为椒盐噪声,同时,它们有时也称为散粒和尖峰噪声。

   上述的几种PDF为在实践中模型化宽带噪声干扰状态提供了有用的工具。例如,在一副图像中,高斯噪声的产生源于电子电路噪声和有低照明度或高温带来的传感器噪声。瑞利密度分布在图像范围内特征化噪声现象时非常有用。指数密度分布和伽马密度分布在激光成像中有一些应用。脉冲噪声主要表现在成像中的短暂停留中,例如错误的开关操作。均匀密度分布可能是在实践中描述的最少,然而,均匀密度座位模拟随机数产生器的基础是非常有用的

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值