噪声在理论上可以定义为/不可预测, 只能用概率统计方法来描述的随机误差0".
因此,可以将图像噪声看成是多维随机过程, 描述噪声完全可以借用随机过程及其概率密度函数".
数字图像的噪声主要来源于图像的获取和传输过程[.]"图像传感器的工作情况受各种因素影响,
如图像获取中的环境条件和传感元器件自身的质量"图像在传输过程中主要由于所用的传输信道的干扰受到噪声污染".
椒盐噪声
椒盐噪声(salt & pepper noise)是数字图像的一个常见噪声,产生该噪声的算法也比较简单。
椒盐,按我的理解,椒就是黑,盐就是白,椒盐噪声就是在图像上随机出现黑色白色的像素。
那么传入两个参数,分别为黑白像素在图像上所占比例,就可以对图像进行修改。我们可以使用 srand 函数,根据 time 产生一个随机种子(以免每次随机的结果相同),然后使用 rand 函数产生随机数,rand 产生的随机数是 0 到 RAND_MAX 之间的整数,可以通过使用 double (rand ()) / RAND_MAX 产生一个 0 到 1 之间的浮点型。
这样,当这个随机数小于 pepper 时,就把该点调黑,大于 1 – salt 时,就把该点调白,就可以产生随机的椒盐噪声了。
效果如图:
高斯噪声
与椒盐噪声相似,高斯噪声(gauss noise)也是数字图像的一个常见噪声,产生该噪声的算法也很简单。
上次说过,椒盐噪声是出现在随机位置、噪点深度基本固定的噪声,高斯噪声与其相反,是几乎每个点上都出现噪声、噪点深度随机的噪声。
该噪声效果如下:
四、按概率密度函数分
事实上,这种易处理性非常方便,使高斯模型经常适用于临街情况下。
瑞利密度对于近似偏移的直方图十分适用。