再学莫比乌斯反演

闲扯

莫比乌斯反演忘得差不多了,导致前几场比赛看到什么计数都像是莫比乌斯,被队友嘲笑了一波,还是学艺不精啊,是时候再学一遍了。
####Begin
刚接触这东西的时候我以为他是一类经验总结而来的经验函数,后来发现我真是 T o o   y o u n g   t o o   s i m p l e Too\ young\ too\ simple Too young too simple

下面是莫比乌斯反演的定义 : : :

F ( x ) = ∑ d ∣ x f ( d ) ⇔ f ( x ) = ∑ d ∣ x μ ( x d ) F ( d ) ⇔ f ( x ) = ∑ d ∣ x μ ( d ) F ( x d ) F(x) = \sum_{d|x}f(d) \Leftrightarrow f(x) = \sum_{d|x}\mu(\frac{x}{d})F(d) \Leftrightarrow f(x) = \sum_{d|x}\mu(d)F(\frac{x}{d}) F(x)=dxf(d)f(x)=dxμ(dx)F(d)f(x)=dxμ(d)F(dx)

F ( d ) = ∑ d ∣ x f ( x ) ↔ f ( d ) = ∑ d ∣ x μ ( x d ) F ( x ) F(d) = \sum_{d|x}f(x) \leftrightarrow f(d) = \sum_{d|x}\mu(\frac{x}{d})F(x) F(d)=dxf(x)f(d)=dxμ(dx)F(x)
μ ( d ) = { 1 d = 1 ( − 1 ) r d = p 1 p 2 . . . p r , 其 中 p i 为 不 同 的 素 数 0 else \mu(d) = \begin{cases} 1 &\text{d = 1}\\ (-1)^r &\text{$d=p_1p_2...p_r,其中p_i为不同的素数$}\\ 0 &\text{else} \end{cases} μ(d)=1(1)r0d = 1d=p1p2...pr,其中pi为不同的素数else

显然可以看出莫比乌斯反演有两种表现形式,第二种形式暂时我也没想到怎么证明。第一种倒是证明的方法有很多,这里从离散数学的角度来给出证明。

对数论函数 f f f g g g,有 f ⋈ g ( n ) = ∑ i j = n f ( i ) g ( j ) f\Join g(n) = \sum_{ij=n}f(i)g(j) fg(n)=ij=nf(i)g(j) 称为狄利克雷卷积。

莫比乌斯反演实际上可以看作这样的一个卷积,可以利用上面的卷积形式来给出证明。
在证明之前,我们首先有这些假设,这些假设都可以证明,离散课上都讲过考试也都考过就不细说了(其实是卤煮忘了- -):

  • 狄利克雷卷积是一个交换群。交换群的意思是说满足结合律、交换律、存在单位元和逆元。
  • 单位元   ϵ \ \epsilon  ϵ f ( x ) = [ x = = 1 ] f(x)=[x == 1] f(x)=[x==1]

有了这些假设便可以很方便的证明莫比乌斯反演了。

  • 设函数 O n e ( x ) = 1 One(x) = 1 One(x)=1
  • 假设现在我们知道 F ( x ) = ∑ d ∣ x f ( x ) F(x)=\sum_{d|x}f(x) F(x)=dxf(x) F = f ⋈ O n e F=f\Join One F=fOne, 要证明的是其反演的形式,即证明 f = F ⋈ μ f=F\Join \mu f=Fμ
  • 很容易得 μ ⋈ O n e = ϵ \mu \Join One = \epsilon μOne=ϵ,也就是说 O n e One One μ \mu μ的逆元。那么是不是有 F ⋈ μ = f ⋈ O n e ⋈ μ F \Join \mu = f \Join One \Join \mu Fμ=fOneμ,因为狄利克雷卷积满足交换律和结合律,所以有 F ⋈ μ = f ⋈ ( μ ⋈ O n e ) = f ⋈ ϵ = f F \Join \mu = f \Join (\mu \Join One)=f \Join \epsilon = f Fμ=f(μOne)=fϵ=f,证毕。
然后

常用的几个数论定理

  • ∑ d ∣ n μ ( d ) = [ n = = 1 ] \sum_{d|n}\mu(d) = [n==1] dnμ(d)=[n==1]

  • ∑ d ∣ n ϕ ( d ) = n \sum_{d|n}\phi(d) = n dnϕ(d)=n

  • ∑ d ∣ n μ ( d ) d = ϕ ( n ) n \sum_{d|n}\frac{\mu(d)}{d}=\frac{\phi(n)}{n} dndμ(d)=nϕ(n)

  • a b ≡ a ϕ ( p ) a b % ϕ ( p ) ( m o d   p ) a^b \equiv a^{\phi(p)}a^{b\%\phi(p)}(mod \ p) abaϕ(p)ab%ϕ(p)(mod p)

  • i f     p ∣ n :       ϕ ( n ∗ p ) = p ϕ ( n ) e l s e :     ϕ ( n ∗ p ) = ( p − 1 ) ϕ ( n ) ( p   i s   a   p r i m e ) if\ \ \ p|n:\ \ \ \ \ \phi(n*p)=p\phi(n)\\else :\ \ \ \phi(n*p)=(p-1)\phi(n) \\ (p \ is \ a\ prime) if   pn:     ϕ(np)=pϕ(n)else:   ϕ(np)=(p1)ϕ(n)(p is a prime)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值