BZOJ 2177 [曼哈顿最小生成树]

Description

平面坐标系 xOy 内,给定 n 个顶点V=(x,y)。对于顶点 u,v,u v 之间的距离d定义为 |xuxv|+|yuyv| 。你的任务就是求出这 n 个顶点的最小生成树。

Solution

把平面划分为八个区域以后只有这八个区域的最近点与该点的连边在 Kruscal 中有贡献。
找到这八个点只要用树状数组维护一下即可。

好像很妙的方法。
有一个地方要去重,不然会WA

#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;

const int N = 101010;
const int INF = 2147483647;

inline char get(void) {
    static char buf[100000], *S = buf, *T = buf;
    if (S == T) {
        T = (S = buf) + fread(buf, 1, 100000, stdin);
        if (S == T) return EOF;
    }
    return *S++;
}
inline void read(int &x) {
    static char c; x = 0; int sgn = 0;
    for (c = get(); c < '0' || c > '9'; c = get()) if (c == '-') sgn = 1;
    for (; c >= '0' && c <= '9'; c = get()) x = x * 10 + c - '0';
    if (sgn) x = -x;
}

struct Point {
    int x, y, id;
    Point (int _x = 0, int _y = 0, int i = 0):x(_x), y(_y), id(i) {}
    inline friend bool operator <(const Point &a, const Point &b) {
        return a.x == b.x ? a.y < b.y : a.x < b.x;
    }
    inline void Ref(int dir) {
        if (dir & 1) swap(x, y);
        else if (dir == 2) x = -x;
    }
};
struct node {
    int pos, key;
    node (int p = 0, int k = 0):pos(p), key(k) {}
};
struct edge {
    int from, to, key;
    edge(int f = 0, int t = 0, int k = 0):from(f), to(t), key(k) {}
    inline friend bool operator <(const edge &a, const edge &b) {
        return a.key < b.key;
    }
};
node C[N];
Point P[N];
edge G[N << 3];
int n, pos, Gcnt, cnt;
long long ans;
int mp[N], v[N];
int fa[N], rk[N];

inline int lowbit(int x) {
    return x & -x;
}
inline void Modify(int x, int key, int pos) {
    for (; x; x -= lowbit(x))
        if (C[x].key > key)
            C[x] = node(pos, key);
}
inline int Query(int x) {
    int key = INF, pos = -1;
    for (; x <= n; x += lowbit(x))
        if (C[x].key < key) {
            key = C[x].key; pos = C[x].pos;
        }
    return pos;
}
inline int Abs(int x) {
    return x < 0 ? -x : x;
}
inline int Dis(const Point &a, const Point &b) {
    return Abs(a.x - b.x) + Abs(a.y - b.y);
}
inline int F(int x) {
    return fa[x] == x ? x : fa[x] = F(fa[x]);
}
inline bool Merge(int x, int y) {
    static int f1, f2;
    f1 = F(x); f2 = F(y);
    if (f1 == f2) return false;
    if (rk[f1] > rk[f2]) swap(f1, f2);
    if (rk[f1] == rk[f2]) rk[f2]++;
    fa[f1] = f2; return true;
}
inline bool cmp(const int a, const int b) {
    return v[a] < v[b];
}
inline void AddEdge(int from, int to, int key) {
    G[++Gcnt] = edge(from, to, key);
}

int main(void) {
    freopen("1.in", "r", stdin);
    freopen("1.out", "w", stdout);
    read(n);
    for (int i = 1; i <= n; i++) {
        read(P[i].x); read(P[i].y);
        P[i].id = i; fa[i] = i;
    }
    for (int dir = 0; dir < 4; dir++) {
        for (int i = 1; i <= n; i++) P[i].Ref(dir);
        sort(P + 1, P + n + 1);
        for (int i = 1; i <= n; i++) {
            mp[i] = i; v[i] = P[i].y - P[i].x;
            C[i] = node(-1, INF);
        }
        sort(mp + 1, mp + n + 1, cmp);
        cnt = 0; mp[n + 1] = INF;
        for (int i = 1; i <= n; i++) {
            ++cnt;
            while (v[mp[i]] == v[mp[i + 1]]) v[mp[i++]] = cnt;
            v[mp[i]] = cnt;
        } // 离散去重
        for (int i = n; i; i--) {
            pos = Query(v[i]);
            if (~pos) AddEdge(P[i].id, P[pos].id, Dis(P[i], P[pos]));
            Modify(v[i], P[i].x + P[i].y, i);
        }
    }
    sort(G + 1, G + Gcnt + 1);
    for (int i = 1; i <= Gcnt; i++) {
        if (Merge(G[i].from, G[i].to)) {
            n--; ans += G[i].key;
            if (n == 1) break;
        }
    }
    cout << ans << endl;
}

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值