网络科学导论学习笔记:网络与图

引论

        图是抽象的网络表示,它帮助我们有可能透过现象看本质,帮助我们得到具体的实际网络的拓扑性质。网络的拓扑性质是指与网络中节点的大小、位置、形状等以及节点间是如何连接的方式等都无关,而只与网络中有多少节点,节点之间有无边相连这些基本特征相关。众所周知的网络问题是七桥问题,在18世纪的哥尼斯堡,有一条河穿过,河上有两个小岛,有七座桥把两个岛与河岸联系起来,有人提出,能否一次性不重复且不遗漏地走完七座桥然后回到出发点。

欧拉对此问题将其转化为几何图形,给出了一个连通图,不考虑桥的长短宽窄,将被河流分割的每块陆地用一个点表示,河流上的桥就是节点之间的连边。下图即为七桥问题等价图形。

 在连通图中无法看出每座桥或陆地的具体信息,单纯从研究这个问题是否有解的角度去进行求解,简单且纯粹。

1 图

1.1 定义

        图的定义:一个由点集V,边集E组成的图 G=(V,E)

1.2 图的类型

        图根据连边的权重和方向可以分为无权无向图,无权有向图,加权有向图,加权无向图,四者转化关系如下:

1)无权无向图

        所谓无权无向图即图中的边是无方向且无权重的。

2)无权有向图

        与无全无向图不同的是,无权有向图中的连边是带有方向的,每一条边都有起始点和重点,如节点 i 指向节点 j 的连边可用向量 (i,j) 表示。典型的应用网络如引文网络、社交软件关注网络等。

3)加权有向图

        加权有向图中的连边是有方向且有权重的,权重可以描述两个节点之间联系的强度。典型应用网络如交通网络、金融网络等。

4)加权无向图

        与无权无向图相比,加权无向图的连边是有权重但无方向的。典型实际网络如科研合著网络等。

2.3 简单图

        简单图的定义:所谓简单图即两个节点间至多只有一条连边,没有自环的图。即没有自环和重边的图。简单图有两种极端情形:

1)空图

        空图:① 没有任何节点或连边的图;② 有节点但是没有连边。

2)完全图

        完全图:完全图即每个节点之间都存在一条连边,总边数为N(N-1)/2

稀疏网络:当节点数N较大,且图的连边数量远小于完全图的连边数量时,该网络称为稀疏网络。

2.4 图在计算机中的表示

1)邻接矩阵

加权有向图

\large a_{ij}=\left\{\begin{matrix} w_{ij},\\ 0, \end{matrix}\right.   

\large w_{ij} 代表从 i 指向 j 的权值为\large w_{ij} 的边;0即没有从 i 指向 j 的边

\large A=\begin{bmatrix} 0 & 3\\ 2&0 \end{bmatrix}

加权无向图

 \large a_{ij}=\left\{\begin{matrix} w_{ij},\\ 0, \end{matrix}\right.   

\large w_{ij} 代表从 i 与j之间的权值为\large w_{ij} 的边;0即 i 与 j 之间没有边

\large A=\begin{bmatrix} 0 & 3\\ 3&0 \end{bmatrix}

无权有向图

\large a_{ij}=\left\{\begin{matrix} 1,\\ 0, \end{matrix}\right.

如果有从节点 i 指向节点 j 的边则为1,如果没有从节点 i 指向节点 j 的边则为0;

\large A=\begin{bmatrix} 0 & 1\\ 0&0 \end{bmatrix}

无权无向图

\large a_{ij}=\left\{\begin{matrix} 1,\\ 0, \end{matrix}\right.

如果有节点 i 与节点 j 的边则为1,如果没有节点 i 与节点 j 的边则为0;

\large A=\begin{bmatrix} 0 & 1\\ 1&0 \end{bmatrix}

2)邻接表

表示稀疏的无权图的最常用方法是邻接表。其构成为节点和连边组成的单链表,如七桥问题网络,将A、B、C、D分别用1,2,3,4表示,其网络的邻接表表示如下:

\large \left|\begin{matrix} 1&2 &3 &4 \\ 2&1 &4 & \\ 3&1 &4 & \\ 4&1 &2 &3 \end{matrix}\right.

3)三元组

三元组的格式与邻接表是相近的,其第一列为起始节点编号,第二列为目标节点编号,第三列代表这条连边的一个权值,将邻接矩阵表示中的有权有向网络以三元组的形式表示,可表示如下:

\left|\begin{matrix} 1&2 &3 \\ 2&1 &2 \end{matrix}\right.

2.5 路径与连通性

1)路径

有连才有网,讨论两个节点是否相关,即两个节点之间有无路径。设一个无向图为G=(V,E)

路径(Path):无向图中的路径是指一个节点至另一个节点之间的边,如无向图G中,存在一个节点A,和一个节点D,二者本身是不相邻的,没有直接的连边,但A可以通过其相邻节点找到与D相连的一组连边,这一组连边即A-D的路径,一条路径的长度即这条路径中所包含的连边数。

回路(Circuit):起点与终点重合的路径。

简单路径(Simple Path):各个顶点互不相同的路径。

圈(Circle):圈可以成为特殊的回路,即起点与终点重合,但路径中间历经的节点并无重合。所以说,一个圈必定是一个回路,而一个回路中可能包含多个圈。

2)连通性

无向图连通性:

若每一对节点之间都存在一条路径,则称这个无向图是连通的;否则则是不连通的。而一个不连通图是由多个连通片组成的。连通片是网络中满足连通性和独立性的子图。

连通性判别:若一个网络的邻接矩阵是不可约的,则该网络是连通的。

有向图连通性:

强连通:一个有向图的任意节点对之间存在相互指向的路径。弱连通:当且仅当将有向图的有向边转换为无向边只后的无向图的是连通的。

2.6 生成树与最小生成树

1)树

一个含有N个节点与N-1条连边的连通图可以成为树。一棵树有如下特点:

        a、图G是连通的且有N-1条连边

        b、图G是连通的且不包含圈

        c、图G的任意节点对之间仅有一条路径

        d、图G去掉任意一条连边都会变得不连通

2)最小生成树

生成树:一个连通图G本身不是一棵树,但可以看作是一棵树添加了一部分连边形成的图,这棵树即为生成树。而这棵树可以看做是连通图G的一个子图。一个包含N个节点的完全图存在N^{N-2}棵生成树。

最小生成树:在加权无向图中,每棵生成树的连边数必然都为N-1,但其连边的权值之和不尽相同,其中权值之和最小的成为最小生成树。

2.7 二分图与匹配问题

1)二分图

二分图:给定图G=(V,E)。若可将点集V划分为X,Y两个子集,且E中的每一条边的两个节点分属于不同子集,则可称G为一个二分图。若子集X和子集Y的任意节点对之间都存在一条连边,则图G可称为完全二分图。

2)匹配问题

匹配:给定二分图G,F为边集E的一个子集,若F中的连边没有公共节点,则称F为图G的一个匹配。

最大匹配:二分图G的匹配中连边数最多的匹配。

X-完全匹配:二分图G的匹配F中包含所有X子集的节点,同理Y-完全匹配即为F中包含所有Y子集的节点。

完全匹配:即F既是X-完全匹配又是Y-完全匹配。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
计算机科学导论是计算机科学专业的入门课程,它涵盖了计算机科学及其相关领域的基本概念、基本理论和基本技术。以下是一些学习笔记,希望对您有所帮助: 1. 计算机科学的定义: 计算机科学是研究计算机及其在信息处理中的应用的学科,它涉及计算机硬件、软件、算法、数据结构、数据库、网络、人工智能等方面的知识。 2. 计算机科学的历史: 计算机科学的发展经历了多个阶段,从最初的机械计算器到现代的超级计算机,计算机科学的发展一直在推动着人类社会的进步。 3. 计算机科学的基本概念: 计算机科学的基本概念包括:二进制、位、字节、字符、编码、算法、数据结构、程序、操作系统、编译器等。 4. 计算机科学的基本理论: 计算机科学的基本理论包括:灵机、计算复杂性理论、自动机理论、信息论等。 5. 计算机科学的基本技术: 计算机科学的基本技术包括:计算机网络、数据库、人工智能、形学、软件工程、计算机安全等。 6. 计算机科学的研究方法: 计算机科学的研究方法包括:实验研究、理论研究、模拟研究、仿真研究等。 7. 计算机科学的应用领域: 计算机科学的应用领域包括:信息技术、通信技术、金融、医疗、教育、交通、娱乐等。 以上是一些计算机科学导论学习笔记,希望对您有所帮助。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值