机器学习基础篇-逻辑回归和多分类问题

Logistic Regression

定义:给定样本x的特征向量,输出为正样本时的概率 p ( y = 1 ∣ x ) p(y=1|x) p(y=1x),同时有负样本的概率为 p ( y = 0 ∣ x ) = 1 − p ( y = 1 ∣ x ) p(y=0|x) = 1-p(y=1|x) p(y=0x)=1p(y=1x)。在逻辑回归中,可学习的参数为W和b。

公式:
p ( y = 1 ∣ x ) = σ ( W T x + b ) = ( 1 + e − W T x − b ) − 1 p(y=1|x)=\sigma(W^Tx+b)=(1+e^{-W^Tx-b})^{-1} p(y=1x)=σ(WTx+b)=(1+eWTxb)1

如下图所示,x轴为线性回归的值 W T + b W^T+b WT+b,y轴的值是x轴的值通过了sigmoid变换得到的 p ( y = 1 ∣ x ) p(y=1|x) p(y=1x)
在这里插入图片描述

损失函数:
L ( y ^ i , y i ) = − [ y i l o g y ^ i + ( 1 − y i ) l o g ( 1 − y ^ i ) ] L(\widehat{y}^i,{y}^i) = -[{y}^ilog\widehat{y}^i+(1-y^i)log(1-\widehat{y}^i)] L(y i,yi)=[yilogy i+(1yi)log(1y i)]

  • y ^ i \widehat{y}^i y i是预测值
  • y i {y}^i yi是真实值

对于整个训练数据,有:
J ( W , b ) = 1 m ∑ i = 1 m L ( y ^ i , y i ) J(W,b)=\frac{1}{m}\sum^m_{i=1}L(\widehat{y}^i,y^i) J(W,b)=m1i=1mL(y i,yi)

  • m 为 数 据 集 的 样 本 数 m为数据集的样本数 m

综上所述,最小化损失函数即最大化样本发生的可能性
由公式,样本发生的概率为
L o g L i k e l i h o o d = ∑ i = 1 m l o g P ( y i ∣ x i ) = ∑ i = 1 m l o g ( y ^ y ( 1 − y ^ ) 1 − y ) = − ∑ i = 1 m L ( y ^ i , y i ) LogLikelihood=\sum^m_{i=1}logP(y^i|x^i)=\sum_{i=1}^mlog(\widehat{y}^y(1-\widehat{y})^{1-y})=-\sum_{i=1}^mL(\widehat{y}^i,y^i) LogLikelihood=i=1mlogP(yixi)=i=1mlog(y y(1y )1y)=i=1mL(y i,yi)

Multi-Class Classification (Softmax Regression)

在这里插入图片描述

softmax回归是逻辑回归(二分类)的一种推广,专门处理多分类问题。
在上图中,这是一个三分类的神经网络。最后一层是通过softmax激活函数进行转换输出,输出的值为每个class发生的概率。

softmax激活函数如下所示:
z ∣ L ∣ = [ z 0 ∣ L ∣ , z 1 ∣ L ∣ , z 2 ∣ L ∣ ] a ∣ L ∣ = [ e z 0 ∣ L ∣ e z 0 ∣ L ∣ + e z 1 ∣ L ∣ + e z 2 ∣ L ∣ , e z 1 ∣ L ∣ e z 0 ∣ L ∣ + e z 1 ∣ L ∣ + e z 2 ∣ L ∣ , e z 2 ∣ L ∣ e z 0 ∣ L ∣ + e z 1 ∣ L ∣ + e z 2 ∣ L ∣ ] = [ p ( c l a s s = 0 ∣ x ) , p ( c l a s s = 1 ∣ x ) , p ( c l a s s = 2 ∣ x ) ] = [ y 0 , y 1 , y 2 ] \begin{aligned} &z^{|L|}=[z_0^{|L|},z_1^{|L|},z_2^{|L|}]\\ &a^{|L|}=[\frac{e^{z_0^{|L|}}}{e^{z_0^{|L|}}+e^{z_1^{|L|}}+e^{z_2^{|L|}}},\frac{e^{z_1^{|L|}}}{e^{z_0^{|L|}}+e^{z_1^{|L|}}+e^{z_2^{|L|}}},\frac{e^{z_2^{|L|}}}{e^{z_0^{|L|}}+e^{z_1^{|L|}}+e^{z_2^{|L|}}}]\\ &=[p(class=0|x),p(class=1|x),p(class=2|x)]\\ &=[y_0,y_1,y_2] \end{aligned} zL=[z0L,z1L,z2L]aL=[ez0L+ez1L+ez2Lez0L,ez0L+ez1L+ez2Lez1L,ez0L+ez1L+ez2Lez2L]=[p(class=0x),p(class=1x),p(class=2x)]=[y0,y1,y2]

损失函数:
L o s s F u n c t i o n = 1 m ∑ i = 1 m L ( y ^ i , y i ) L ( y ^ i , y ) = − ∑ j 3 y j i l o g y ^ j i LossFunction=\frac{1}{m}\sum^m_{i=1}L(\widehat{y}^i,y^i)\\ L(\widehat{y}^i,y)=-\sum^3_jy^i_jlog\widehat{y}^i_j LossFunction=m1i=1mL(y i,yi)L(y i,y)=j3yjilogy ji

  • m为样本数,j为第j个class。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.Wiggles

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值