(任意)
(存在)
子集和真子集
一些集合关系符号的Latex写法:
的Latex写法为\not\subset
的Latex写法是\subsetneqq,否定式写法是\subseteqq
1)子集
注意:子集只有两种:一种是真子集,另一种是两个集合相等。
若集合中任意一个元素都是集合的元素,则是的子集。
2)真子集
如果是的子集,并且,则是的真子集。
说白了就是A中的所有元素B都包含,而B中有些元素是A中没有的,那么A就是B的真子集。比如:A={1, 3},而B={1, 2, 3},则A是B的真子集。
此外,空集是任何非空集合的真子集。
符号搭配方式
国际上定义了如下两种符号搭配:
搭配方式1
(记忆:对应,对应)
表示是的子集(否定式为),表示是的真子集(这里真子集的否定为,表示:要么不是的子集,要么);
搭配方式2
表示是的子集(否定式为);
表示是的真子集(这里真子集的否定式为:,表示:要么不是的子集,要么)
(记忆:表示是的子集,且)
---------------------------------分割线------------------------------------
(表示某个元素属于某个集合)比如:表示元素属于集合。即:是集合中的一个元素。
(表示某个元素不属于某个集合)
(连加)
比如:,表示从一直加到,
即:
(连乘)
比如:,表示从1一直乘到100,
即: