数学语言符号汇总

\forall(任意)

\exists(存在)

子集和真子集

一些集合关系符号的Latex写法:

\not\subset的Latex写法为\not\subset

\subsetneqq的Latex写法是\subsetneqq,否定式\subseteqq写法是\subseteqq

1)子集

注意:子集只有两种:一种是真子集,另一种是两个集合相等。

若集合A中任意一个元素都是集合B的元素,则AB的子集。

2)真子集

如果AB的子集,并且A\neq B,则AB的真子集。

说白了就是A中的所有元素B都包含,而B中有些元素是A中没有的,那么A就是B的真子集。比如:A={1, 3},而B={1, 2, 3},则A是B的真子集。

此外,空集\phi是任何非空集合的真子集。

符号搭配方式

国际上定义了如下两种符号搭配:

搭配方式1

(记忆:\subseteq对应\leq\subset对应<

A\subseteq B表示AB的子集(否定式为A\nsubseteq B),A\subset B表示AB的真子集(这里真子集的否定为A\not\subset B,表示:要么A不是B的子集,要么A=B);

搭配方式2

A\subset B表示AB的子集(否定式为A\not\subset B);

A\subsetneqq B表示AB的真子集(这里真子集的否定式为:A\subseteqq B,表示:要么A不是B的子集,要么A=B

(记忆:A\subsetneqq B表示AB的子集,且A\neq B

---------------------------------分割线------------------------------------

\in(表示某个元素属于某个集合)比如:y\in Y表示元素y属于集合Y。即:y是集合Y中的一个元素。

\notin(表示某个元素不属于某个集合)

\sum(连加)

比如:\sum_{i=1}^{n}i^{2},表示i^{2}i=1一直加到i=n

即:\sum_{i=1}^{n}i^{2}=1^{2}+2^{2}+3^{2}+...+n^{2}

\prod(连乘)

比如:\prod_{i=1}^{100}i,表示i从1一直乘到100,

即:\prod_{i=1}^{100}i=1\times 2\times3\times...\times100

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值