目录
数学公式
\usepackage{amsmath}
:导言区引用数学公式的宏包
1、基础操作
1.1插入公式
有两种插入公式的方法:
1、$数学公式$
:行中公式,数学公式与$连接处不要有空格,否则公式不会显示。
2、$$数学公式$$
:居中公式(独立公式),数学公式与$$连接处可以有空格。
1.2 编号
$$
x+y=z
\tag{1}
$$
(1)
1.3对齐
使用\begin{aligned}
进行对齐,&
表示对齐位置,一般都在=
前面。
$$
\begin{aligned}
f(x)&=2x+1 \\
&=2+1 \\
&=3
\end{aligned}
$$
1.4上下标
^
表示上标, _
表示下标。如果上下标的内容多于一个字符,需要用 {}
将这些内容括成一个整体。
输入 | 显示 |
---|---|
$a^2$ | |
$a_2$ | |
$x^{y+z}$ | |
$p_{xj}$ | |
$x_i$ | |
$x_{\text i}$ | |
$\text{e}$ |
$$
x^{y^z_w}=(1+{\rm e}^x)^{-2xy^w}
$$
2、希腊字母
输入 \小写希腊字母英文全称
和\首字母大写希腊字母英文全称
来分别输入小写和大写希腊字母。 对于大写希腊字母与现有字母相同的,直接输入大写字母即可。
输入 | 显示 | 输入 | 显示 |
---|---|---|---|
$\alpha$ | $A$ | A | |
$\beta$ | $B$ | B | |
$\gamma$ | $\Gamma$ | ||
$\delta$ | $\Delta$ | ||
$\epsilon$ | $E$ | E | |
$\zeta$ | $Z$ | Z | |
$\eta$ | $H$ | H | |
$\theta$ | $\Theta$ | ||
$\iota$ | $I$ | I | |
$\kappa$ | $K$ | K | |
$\lambda$ | $\Lambda$ | ||
$\nu$ | $N$ | N | |
$\mu$ | $M$ | M | |
$\xi$ | $\Xi$ | ||
$o$ | o | $O$ | O |
$\pi$ | $\Pi$ | ||
$\rho$ | $P$ | P | |
$\sigma$ | $\Sigma$ | ||
$\tau$ | $T$ | T | |
$\upsilon$ | $\Upsilon$ | ||
$\phi$ | $\Phi$ | ||
$\chi$ | $X$ | X | |
$\psi$ | $\Psi$ | ||
$\omega$ | $\Omega$ |
3、字体
{\字体 {需转换的字符} }
:进行字体转换,里面一层大括号可省略。一般情况下,公式默认为意大利体,直体为罗马体 。
输入 | 说明 | 显示实例 |
---|---|---|
$\rm D$ | 罗马体 | |
$\mathcal D$ | 花体 | |
$\it D$ | 斜体(默认,意大利体) | |
$\mathit D$ | 数学斜体 | |
$\Bbb D$ | 黑板粗体 | |
$\bf D$ | 粗体 | |
$\sf D$ | 等线体 | |
$\mathscr D$ | 手写体 | ![]() |
$\tt D$ | 打字机体 | |
$\frak D$ | 旧德式字体 | |
$\boldsymbol D$ | 黑体 |
4、括号
4.1括号
()、[]、|
表示符号本身,使用 \{\}
来表示 {}。
输入 | 显示 | 输入 | 显示 |
---|---|---|---|
$\langle1+2\rangle$ | $()$ | ||
$\lceil1+2\rceil$ | $[]$ | ||
$\lfloor1+2\rfloor$ | $[0,1)$ | ||
$\lbrace1+2\rbrace$ | $\binom{a}{b}$ |
4.2大括号
-
方法1
使用 \left
和 \right
来创建自动匹配高度的括号,包含 (圆括号)、[方括号]、|绝对值|。如$\left(表达式\right)$
,$\left[表达式\right]$
,$\left|表达式\right|$
......
$$
f\left(
\left[
\frac{
1+\left\{x,y\right\}
}{
\left(
\frac{x}{y}+\frac{y}{x}
\right)
\left(u+1\right)
}+a
\right]^{3/2}
\right)
$$
有时候要用\left.
或\right.
进行匹配而不显示本身。
$$
\left.
\frac{
{\rm d}u}{
{\rm d}x}
\right|_{x=0}
$$
-
方法2
使用\big
和\bigg
来创建逐级变大的括号,包含 (圆括号)、[方括号]、|绝对值|。
$$\bigg( \big( ( ) \big) \bigg)$$
$$\bigg[ \big[ [ ] \big] \bigg]$$
$$\bigg| \big| | | \big| \bigg|$$
5、运算符
5.1关系运算符
输入 | 符号 | 输入 | 符号 |
---|---|---|---|
$\pm$ $\mp$ | $\geq$ 或 $\ge$ | ||
$\times$ | $\neq$ 或 $\ne$ | ||
$\div$ | $\approx$ | ||
$\mid$ | $\equiv$ | ||
$\nmid$ | $\ll$ | ||
$\cdot$ | $\gg$ | ||
$\circ$ | $\sum$ | ||
$\ast$ | $\prod$ | ||
$\bigodot$ | $\coprod$ | ||
$\bigotimes$ | $\prec$ | ||
$\bigoplus$ | $\preceq$ | ||
+, -, *, /, = | +, -, *, /, = | $\succ$ | |
$\leq$ 或 $\le$ | $\succeq$ |
5.2集合运算符
输入 | 符号 | 输入 | 符号 |
---|---|---|---|
$\emptyset$ | $\bigcap$ | ||
$\in$ | $\bigcup$ | ||
$\notin$ | $\bigvee$ | ||
$\subset$ | $\bigwedge$ | ||
$\supset$ | $\biguplus$ | ||
$\subseteq$ | $\bigsqcup$ | ||
$\supseteq$ | $\sim$ | ||
$\backsim$ |
5.3三角运算符
输入 | 符号 | 输入 | 符号 |
---|---|---|---|
$\bot$ | $\angle$ | ||
$30^\circ$ | $\sin$ | ||
$\cos$ | $\tan$ | ||
$\cot$ | $\sec$ | ||
$\csc$ |
5.4微积分运算符
输入 | 符号 | 输入 | 符号 |
---|---|---|---|
$\prime$ | $\int$ | \ | |
$\iint$ | $\iiint$ | ||
$\oint$ | $\oiint$ | ||
$\oiiint$ | ![]() | $\lim$ | |
$\infty$ | $\nabla$ | ||
$\partial$ |
5.5逻辑运算符
输入 | 符号 | 输入 | 符号 |
---|---|---|---|
$\because$ | $\not=$ | ||
$\therefore$ | $\not>$ | ||
$\forall$ | $\not\subset$ | ||
$\exists$ | $\propto$ |
5.6箭头运算符
输入 | 符号 |
---|---|
$\uparrow$ | |
$\downarrow$ | |
$\Uparrow$ | |
$\Downarrow$ | |
$\rightarrow$ 或 $\to$ | |
$\leftarrow$ 或 `$\gets$ | |
$\Rightarrow$ | |
$\Leftarrow$ | |
$\longrightarrow$ | |
$\longleftarrow$ | |
$\Longrightarrow$ 或 $\implies$ | |
$\Longleftarrow$ | |
$\Longleftrightarrow$ | |
$f: {\mathbf x_t} \mapsto {\mathbf y_t}$ |
5.7省略号
输入 | 符号 | 说明 |
---|---|---|
$\ldots$ | 与文本底线对齐的横向省略号 | |
$\cdots$ | 与文本中线对齐的横向省略号 | |
$\vdots$ | 纵向省略号 | |
$\ddots$ | 斜向省略号 |
$\ldots$ %底线对齐
$\cdots$ %文本中线对齐
$$
f(x_1,x_2,\underbrace{\ldots}_{\rm ldots} ,x_n) = x_1^2 + x_2^2 + \underbrace{\cdots}_{\rm cdots} + x_n^2
$$
6、符号
6.1帽子符号
输入 | 符号 | 输入 | 符号 |
---|---|---|---|
$\hat{A}$ | $\widehat{A}$ | ||
$\check{A}$ | $\widecheck{A}$ | ||
$\breve{A}$ | $\tilde{A}$ | ||
$\widetilde{A}$ | $\overline{A}$ | ||
$\underline{A}$ | $\overleftarrow{A}$ | ||
$\overrightarrow{A}$ | $\overbrace{A}$ | ||
$\underbrace{A}$ | $\overset{a}{b}$ | ||
$\underset{a}{b}$ | `` |
6.2特殊符合
输入 | 符号 | 说明 |
---|---|---|
$\infty$ | 无穷大符号 | |
$\hat x$ | 帽 | |
$\ell_p$ | 范数 | |
$\xrightarrow{f}$ | 箭头备注 | |
$\overset{def}{=}$ | 上备注 | |
$\underset{x\in S\subseteq X}{max}$ | 下备注 |
7、数学公式
7.1分式
通常使用 \frac {分子} {分母}
命令产生一个分式,分式可嵌套。
便捷情况可直接输入\frac ab
来快速生成一个 。
如果分式很复杂,亦可使用 分子 \over 分母
命令,此时分式仅有一层。
$$
\frac{a-1}{b-1} \quad and \quad {a+1\over b+1}
$$
如果分式的分子显小,可以使用 \dfrac
代替 \frac
。
$$
\frac{\dfrac{1}{x}+1}{y+1}
$$
7.2根式
\sqrt [根指数] {被开方数}
,注意,当缺省根指数时默认为2
$$
\sqrt{2} \quad and \quad \sqrt[n]{x+y}
$$
7.3对数
\log_{对数底数}{表达式}
,其中表达式的大括号可省略。
输入 | 符号 | 输入 | 符号 | 输入 | 符号 |
---|---|---|---|---|---|
$\log$ | $\lg$ | $\ln$ | |||
$\log_n x$ | $\lg x$ | $\ln x$ |
7.4最值
\max_{下标表达式}{最值表达式}
表示最大值
\min_{下标表达式}{最值表达式}
表达最小值。
$$
||x||_\infty=\max_{1\leq i\leq n}{|x_i|}
$$
7.5矢量
使用 \vec{矢量}
来自动产生一个矢量。
$$
\vec{a} \cdot \vec{b}=0
$$
7.6极限
\lim_{变量 \to 表达式} 表达式
, \to
符号可以根据需要更改为任意符号。此类符号在行内显示($表达式$
)时第一个{}中的条件将会移至右下角。
$$
\lim_{n \to +\infty} \frac{1}{n(n+1)} \quad and \quad \lim_{x\leftarrow{example} \infty} \frac{1}{n(n+1)}
$$
7.7导数
1.7.1导数
${\rm d}x$
或${\text d}x$
或$\text{d}x$
$${\rm d}x \quad and \quad {\text d}x \quad and \quad \text{d}x$$
7.7.2偏导
$$\frac{\partial y}{\partial x}$$
7.7.3梯度
$$\nabla f(x)$$
7.8积分
\int_积分下限^积分上限 {被积表达式}
$$
\int_0^1 {x^2} \,{\rm d}x
$$
7.9累加和累乘
使用 \sum_{下标表达式}^{上标表达式}{累加表达式}
来输入一个累加。 与之类似,使用 \prod
、\bigcup
、\bigcap
来分别输入累乘、并集和交集。 此类符号在行内显示($表达式$
)时上下标表达式将会移至右上角和右下角。
$$
\sum_{i=1}^n \frac{1}{i^2} \quad and \quad \prod_{i=1}^n \frac{1}{i^2} \quad and \quad \bigcup_{i=1}^{2} R \quad and \quad \bigcap_{i=1}^{2} R
$$
7.10方程组和分段函数
7.10.1方程组
方程组有2种方式,分别是\begin{aligned}
和\begin{cases}
方式,&
表示对齐位置。
-
\begin{aligned}
方式:
$$
\left\{
\begin{aligned}
a+b&=2 \\
a-b&=4 \\
\end{aligned}
\right.
$$
-
\begin{cases}方式
(推荐):
$$
\begin{cases}
a+b=2 \\
a-b=4 \\
\end{cases}
$$
7.10.2分段函数
用\begin{cases}
方式实现,不同的是方程式和条件之间要用&
符号隔开
$$
y =
\begin{cases}
\sin(x) & x<0 \\
x^2 + 2x +4 & 0 \leq x < 1 \\
x^3 & x \geq 1 \\
\end{cases}
$$
8、矩阵
8.1普通矩阵
使用\begin{matrix}…\end{matrix}
来表示矩阵,在\begin
与\end
之间加入矩阵中的元素即可。矩阵的行之间使用\\
分隔,\\
表示换行;列之间使用&
分隔,&
表示对齐位置。
$$
\begin{matrix}
1 & x & x^2 \\
1 & y & y^2 \\
1 & z & z^2 \\
\end{matrix}
$$
8.2括号矩阵
如果要对矩阵加括号,可以使用\left
与\right
配合表示括号符号。也可以使用特殊的matrix
,即替换\begin{matrix}…\end{matrix}
中matrix
为pmatrix
,bmatrix
,Bmatrix
,vmatrix
, Vmatrix
。
下面的例子使用替换matric.
-
1.pmatrix
$$
\begin{pmatrix}
1 & 2 \\
3 & 4 \\
\end{pmatrix}
$$
-
2.bmatrix
$$
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
\end{bmatrix}
$$
-
3.Bmatrix
$$
\begin{Bmatrix}
1 & 2 \\
3 & 4 \\
\end{Bmatrix}
$$
-
4.vmatrix
$$
\begin{vmatrix}
1 & 2 \\
3 & 4 \\
\end{vmatrix}
$$
-
5.Vmatrix
$$
\begin{Vmatrix}
1 & 2 \\
3 & 4 \\
\end{Vmatrix}
$$
8.3行列式
上一小结已经介绍,有两种方法。
-
1、使用
\left
与\right
表示括号
$$
\left|
\begin{matrix}
1 & x & x^2 \\
1 & y & y^2 \\
1 & z & z^2 \\
\end{matrix}
\right|
$$
-
2、使用特殊的
matrix
$$
\begin{vmatrix}
1 & x & x^2 \\
1 & y & y^2 \\
1 & z & z^2 \\
\end{vmatrix}
$$
8.4元素省略矩阵
可以使用\cdots
: ,
\ddots
: ,
\vdots
:,来省略矩阵中的元素。
$$
\begin{pmatrix}
1 & a_1 & a_1^2 & \cdots &a_1^n \\
1 & a_2 &a_2^2 & \cdots &a_2^n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1&a_m & a_m^2 & \cdots & a_m^n \\
\end{pmatrix}
$$
8.5增广矩阵
可以使用\begin{array} ... \end{array}
来实现。
$$
\left[
\begin{array} {c c | c}
% 这里的c表示数组中元素对其方式:c居中、r右对齐、l左对齐;竖线表示2、3列间插入竖线
1 & 2 & 3 \\
4 & 5 & 6
\end{array}
\right]
$$
Latex相关内容链接: