新书导读:《自然语言处理之BERT模型》—算法、架构和案例实战

《自然语言处理之BERT模型》详细介绍了BERT模型的原理、架构和实现,提供初、中、高三个层次的实战案例,适合信息科学专业的学生和NLP研究者学习。本书不仅探讨了自然语言处理的基础和深度学习算法,还展望了领域未来发展趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《自然语言处理之BERT模型》一书先从自然语言处理的概念入手,阐述文本的表示技术等信息处理技术;在介绍了常用的自然语言处理模型之后,聚焦于BERT模型,对BERT 模型的核心场景问题进行分析,对BERT 的原理、架构和实现做了详细的解读。在此基础上分别从初、中、高三个不同层面展示了三个实战案例,给出了具体的代码实现,详实的实战案例使读者能够充分理解BERT 模型,能够利用BERT 模型解决自然语言处理中的实际问题。最后,对自然语言处理和深度学习技术的发展趋势做了展望,对读者进一步深入研究自然语言处理技术提出了有益的建议。本书总共分四大篇章,11个章节。

第1篇  自然语言处理基础(第1~3章)

对自然语言处理技术、掌握该技术需要的预备知识和文本的表示技术做了解释。

第2篇  自然语言处理中的深度学习算法 (第4~5章)

包含第四章和第五章,第四章自然语言处理和深度学习介绍了常用的模型算法 ;第五章重点介绍了BERT 模型。

第3篇  实战案例(第6~8章)

分别从初、中、高三个不同层面展示了三个实战案例。

第4篇  结语和展

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值