基于高斯混合模型聚类的风电场短期功率预测方法
说明:该方法结合数据分布特征,利用 GMM 聚类将大型风电场划分为若干机组群,借助贝叶斯信息准则指标评价,获得风电场内最优机组分组方案。
最后,基于径向基函数(radial basis function,RBF)神经网络的功率预测方法,验证所提聚类方法的有效性以及相较于其他聚类方法的优越性。
编程语言:MATLAB
YID:68400675539574426
发电机转子
基于高斯混合模型聚类的风电场短期功率预测方法
摘要:风电场短期功率预测对于电网稳定运行和风电场经济运行至关重要。本文提出了一种基于高斯混合模型(GMM)聚类的风电场短期功率预测方法,以提高功率预测准确性和可靠性。该方法通过分析风电场的数据分布特征,利用GMM聚类将大型风电场划分为若干机组群,并借助贝叶斯信息准则指标评价获得风电场内最优机组分组方案。最后,基于径向基函数(RBF)神经网络的功率预测方法被用来验证所提聚类方法的有效性和相较于其他聚类方法的优越性。MATLAB编程语言被用来实现该方法,并对实际风电场数据进行实验验证。
-
引言
风能作为一种清洁、可再生的能源形式,正逐渐得到全球范围内的应用。风电场作为风能利用的重要手段,其功率预测是确保电网运行平稳和风电场经济运行的关键。准确的短期功率预测可以帮助电力系统管理者进行调度和能源调配,降低对传统能源的依赖,并提高能源利用效率。 -
相关工作
过去几十年来,关于风电场功率预测的研究取得了很大的进展。常用的方法包括基于统计模型、时间序列模型和人工神经网络模型等。然而,由于风电场本身的复杂性和不确定性,现有的方法仍然存在着一些局限性。 -
方法概述
为了克服现有方法的局限性,本文提出了一种基于GMM聚类的风电场短期功率预测方法。该方法首先通过对风电场的历史功率数据进行分析,得到风电场功率的概率分布。然后,利用GMM聚类将大型风电场划分为若干机组群,以便更好地捕捉风电场内部的数据分布特征。最后,借助贝叶斯信息准则指标评价,选取风电场内最优的机组分组方案。 -
GMM聚类方法
GMM聚类是一种基于概率密度函数的聚类方法,可以用来描述数据的分布特征。在本文中,我们将GMM聚类应用于风电场短期功率预测中,以获得风电场内不同机组的功率数据分布。具体地,我们首先定义了GMM模型的参数,包括混合成分的数量、均值和协方差矩阵。然后,使用EM算法对GMM模型进行参数估计,并通过BIC准则选择最优的模型。最后,利用训练好的GMM模型对风电场数据进行聚类,得到最优的机组分组方案。 -
RBF神经网络功率预测方法
为了验证所提聚类方法的有效性和相较于其他聚类方法的优越性,我们采用了基于RBF神经网络的功率预测方法。RBF神经网络是一种常用的人工神经网络模型,具有较强的非线性拟合能力。在本文中,我们使用MATLAB编程语言实现了RBF神经网络,并对实际风电场数据进行了训练和测试。实验结果表明,所提出的聚类方法能够提高风电场短期功率预测的准确性和可靠性。 -
结论
本文提出了一种基于GMM聚类的风电场短期功率预测方法,并通过基于RBF神经网络的功率预测方法对其进行了验证。实验结果表明,所提出的方法能够有效地提高风电场短期功率预测的准确性和可靠性。未来的研究可以进一步优化聚类方法和神经网络模型,以提高预测效果。
参考文献:
[1] 作者1, 作者2. 文章标题[J]. 期刊名, 年份, 卷号(期号): 起始页码-终止页码.
[2] 作者1, 作者2. 书名[M]. 出版地: 出版社, 出版年份.
[3] 作者1, 作者2. 网址[EB/OL]. 来源地: 发布者, 发布/更新日期.
以上相关代码,程序地址:http://wekup.cn/675539574426.html