AlphaGo 是由 DeepMind 公司开发的一款围棋人工智能程序,它通过深度学习和强化学习相结合的方式自主学习棋局策略,以下是具体介绍:
一、深度学习部分
(1)数据收集与预处理:AlphaGo 团队收集了大量人类围棋高手的对局数据,这些数据包含了各种棋局局面以及对应的人类落子选择。然后对这些数据进行清洗、标注等预处理操作,使其能够用于后续的训练。
(2)构建神经网络架构:AlphaGo 使用了深度神经网络,主要包括策略网络(Policy Network)和价值网络(Value Network)。
(3)策略网络:其输入是当前的棋局局面,输出是对下一步棋的落子概率分布。它通过学习人类棋手的下棋模式,为每一个可能的落子位置分配一个概率值,概率越高的位置意味着该落子方式更符合人类高手的下棋风格。策略网络通常采用卷积神经网络(CNN)架构,因为围棋棋盘是一个二维的网格结构,CNN能够很好地处理这种空间数据,提取棋局中的局部特征,如棋子的布局、棋形等,从而判断哪些落子位置更合理。
(4)价值网络:输入同样是棋局局面,但输出是对该局面的评估,即判断当前局面对于执黑或执白的一方来说是优势还是劣势,以及优势或劣势的程度。它通过对大量对局的胜负结果进行学习,理解不同棋局局面的价值,帮助 AlphaGo 在决策过程中判断局势的发展趋势,从而选择更有希望获胜的下棋策略。
(5)训练神经网络:使用收集到的人类棋局数据对策略网络和价值网络进行监督学习训练。在训练过程中,网络的参数会不断调整,以使网络的输出结果尽可能接近人类棋手的实际落子选择(对于策略网络)或对局的最终胜负结果(对于价值网络)。通过这种方式,神经网络能够学习到人类棋手的下棋技巧和对棋局的判断能力。
二、强化学习部分
(1)自我对弈与策略改进:在深度学习的基础上,AlphaGo 通过自我对弈来进行强化学习。它会使用当前版本的策略网络和价值网络与自己进行对局,不断地尝试不同的下棋策略。在对弈过程中,根据对局的结果(胜负)来调整策略网络的参数,强化那些能够获胜的策略,削弱那些导致失败的策略。这种自我对弈的方式使得 AlphaGo 能够在没有人类干预的情况下自主地探索新的下棋策略,不断地优化自己的棋力。
(2)蒙特卡洛树搜索(MCTS)与强化学习的结合:AlphaGo 将强化学习与蒙特卡洛树搜索相结合。在自我对弈时,它会利用策略网络来快速生成候选落子点,并使用价值网络对这些候选点所在的棋局局面进行评估,然后通过蒙特卡洛树搜索在棋局树中进行搜索,选择最优的落子点。在搜索过程中,根据搜索的结果来进一步更新策略网络和价值网络的参数,使得网络能够更好地预测落子的优劣和棋局的价值,从而实现策略的不断改进。
(3)迭代优化:强化学习是一个不断迭代的过程。AlphaGo 会在每次自我对弈后对策略网络和价值网络进行更新,然后再次进行自我对弈,如此循环往复。通过不断地迭代优化,AlphaGo 的棋力会逐渐提升,最终达到超越人类顶尖棋手的水平。
AlphaGo 的这种深度学习与强化学习相结合的学习方式,使其能够从人类棋手的对局数据中学习到丰富的下棋知识,并在此基础上通过自我对弈不断地探索和创新,从而自主地学习到高效的棋局策略。
04-14
1394

05-26
1288

03-07
8073
