机器学习之特征工程

机器学习之特征工程

定义

特征工程是将原始数据转化为更好代表预测模型的潜在问题的特征的过程,从而提高了对位置数据的预测准确性。其包括特征构建、特征提取、特征选择三部分。数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已,成功的结果往往源自最开始对数据的处理。
在这里插入图片描述
TF-IDF
TF: term frequency,词的频率,即出现的次数
IDF: inverse document frequency,逆文档频率,log(总文档数量/该词出现的文档数量)
作用:用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度

预处理代码

from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.impute import SimpleImputer
import numpy as np
import jieba
from sklearn.feature_selection import VarianceThreshold
from sklearn.decomposition import PCA

def dictvec():
    dict = DictVectorizer(sparse=False) //是否输出的是稀疏矩阵
    # dict = DictVectorizer()
    data = dict.fit_transform([{'city': "北京", 'temperature': 100}, {'city': "上海", 'temperature': 200}, {'city': "桂林", 'temperature': 20}])
    lb = dict.get_feature_names()
    hy = dict.inverse_transform(data)
    print(data)
    print(lb)
    print(hy)
    print(dict.transform([{'foo': 1, "idk": 222}]))
    return

def countvec():
    count = CountVectorizer()
    data = count.fit_transform(['life is a fking movie', '人生如戏呐弟弟', 'life is happy']) //单个字母/中文不统计,中文需先分词再特征提取
    print(count.get_feature_names())
    print(data.toarray())
    return

def hanzivec():
    c1, c2, c3 = cutword()
    print(c1, c2, c3)
    cv = CountVectorizer()
    data = cv.fit_transform([c1, c2, c3])
    print(cv.get_feature_names())
    print(data.toarray())
    return

def cutword():
    con1 = jieba.cut("写作活动大致可分为“采集—构思—表述”三个阶段")
    con2 = jieba.cut("学生在教师指导下按照特定要求用书面语言创造文本")
    con3 = jieba.cut("写作是人类精神生活与实践活动的重要组成部分")
    content1 = list(con1)
    content2 = list(con2)
    content3 = list(con3)
    c1 = ' '.join(content1)
    c2 = ' '.join(content2)
    c3 = ' '.join(content3)
    return c1, c2, c3

def tfidfvec():
    c1, c2, c3 = cutword()
    print(c1, c2, c3)
    tf = TfidfVectorizer()
    data = tf.fit_transform([c1, c2, c3])
    print(tf.get_feature_names())
    print(data.toarray())
    return

def mm():
    mm = MinMaxScaler(feature_range=(2, 3)) //定义归一化范围
    data = mm.fit_transform([[90, 20, 10, 40], [40, 50, 90, 60], [10, 30, 40, 70]])
    print(data)
    return

def stand():
    std = StandardScaler()
    data = std.fit_transform([[1, -1, 3], [2, 5, -4], [3, 4, 2]])
    print(data)
    return

def spim():
    spim = SimpleImputer(missing_values=np.nan, strategy='mean') //也可以用字符NAN等形式
    data = spim.fit_transform([[1, 2], [np.nan, 3], [7, np.nan]])
    print(data)
    return
def var():
    // 特征选择删除低方差
    var = VarianceThreshold(threshold=1)
    data = var.fit_transform([[0, 2, 3, 1], [4, 2, 1, 2], [1, 0, 0, 1]])
    print(data)
    return

def pca():
    pca = PCA(n_components=0.9)
    data = pca.fit_transform([[0, 2, 3, 1], [4, 2, 1, 2], [1, 0, 0, 1]])
    print(data)
    return

# dictvec()
# countvec()
# hanzivec()
# tfidfvec()
# mm()
# stand()
# spim()
# var()
# pca()

注:
1、归一化比标准化更容易受异常值影响;
2、现在Imputer已经被SimpleImputer代替
3、numpy数组中可以使用np.nan或np.NaN来代替缺失值,属于float类型

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
《面向机器学习特征工程pdf》是一本关于机器学习领域中特征工程的书籍。特征工程机器学习中非常重要的一环,其涉及到从原始数据中提取有意义、有用的特征,并将其转化为机器学习算法可以接受的形式。 这本书的主要内容包括特征工程的基本概念、原理和方法,以及在实际应用中的具体实践。首先,书中介绍了特征工程的意义和作用,强调了良好的特征工程机器学习模型性能的提升具有至关重要的作用。 接着,书中详细讲解了常用的特征选择和特征提取方法。特征选择是筛选出对目标变量有最大相关性的特征,以减少特征的维度和冗余性;而特征提取是从原始数据中抽取出最具代表性的特征,以提高模型的泛化能力。书中列举了一些常用的特征选择和特征提取方法,如方差选择、相关系数、主成分分析等,并提供了相应的算法原理和实例。 此外,书中还介绍了一些特征工程中常见的问题和挑战,如缺失值处理、异常值处理和特征缩放等。对于这些问题,书中给出了一些有效的解决策略和技巧,并提供了实际案例和代码示例,帮助读者理解和应用这些方法。 总的来说,《面向机器学习特征工程pdf》是一本系统全面介绍机器学习特征工程的书籍。它将理论和实践结合起来,通过丰富的案例和示例,帮助读者理解和掌握特征工程的基本原理和方法,并能够在实际应用中灵活运用。无论是初学者还是有一定经验的机器学习从业者,都可以从这本书中获得很多有价值的知识和经验。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值