BZOJ[1922][Sdoi2010]大陆争霸 Dijkstra堆优化

33 篇文章 0 订阅
3 篇文章 0 订阅

传送门ber~

没有结界限制的话,就是个普通的最短路
有结界的限制,可以搞一个 f f 数组表示把保护i的结界全炸了最少需要多长时间
更新 dis d i s 的时候就从 dis d i s f f max就可以了(个人理解就是按照限制进行拓扑更新)

代码如下:

#include<algorithm>
#include<ctype.h>
#include<cstdio>
#include<queue>
#define pii pair<LL,int>
#define INF 2147483647
#define mp make_pair
#define N 70050
using namespace std;
inline int read(){
    int x=0,f=1;char c;
    do c=getchar(),f=c=='-'?-1:f; while(!isdigit(c));
    do x=(x<<3)+(x<<1)+c-'0',c=getchar(); while(isdigit(c));
    return x*f;
}
typedef long long LL;
priority_queue<pii,vector<pii>,greater<pii> >q;
int n,m,x,y,k,top,Top;
int fir[N],Fir[N],degree[N];
LL dis[N],f[N];
bool b[N];
struct Edge{
    int to,nex,k;
    Edge(int _=0,int __=0,int ___=0):to(_),nex(__),k(___){}
}nex[N],Nex[N];
inline void add(int x,int y,int k,int fir[],Edge nex[],int &top){
    nex[++top]=Edge(y,fir[x],k);
    fir[x]=top;
}
inline void Dijkstra(){
    for(int i=2;i<=n;i++)
        dis[i]=INF;
    dis[1]=f[1]=0;
    q.push(mp(0,1));
    while(!q.empty()){
        int x=q.top().second;q.pop();
        if(b[x]) continue;
        b[x]=true;
        dis[x]=max(dis[x],f[x]);
        for(int i=fir[x];i;i=nex[i].nex)
            if(dis[nex[i].to]>dis[x]+nex[i].k){
                dis[nex[i].to]=dis[x]+nex[i].k;
                if(!degree[nex[i].to])
                    q.push(mp(max(dis[nex[i].to],f[nex[i].to]),nex[i].to));
            }
        for(int i=Fir[x];i;i=Nex[i].nex){
            degree[Nex[i].to]--;
            f[Nex[i].to]=max(f[Nex[i].to],dis[x]);
            if(!degree[Nex[i].to])
                q.push(mp(max(dis[Nex[i].to],f[Nex[i].to]),Nex[i].to));
        }
    }
}
int main(){
    n=read();m=read();
    for(int i=1;i<=m;i++){
        x=read();y=read();k=read();
        add(x,y,k,fir,nex,top);
    }
    for(int i=1;i<=n;i++){
        degree[i]=k=read();
        for(int j=1;j<=k;j++){
            x=read();
            add(x,i,0,Fir,Nex,Top);
        }
    }
    Dijkstra();
    printf("%lld",dis[n]);
return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值