零售行业如何实现精准补货?

本文探讨了传统零售和新零售中商品需求预测的挑战,介绍了惟客数据开发的基于时序分析的智能补货系统,通过数据中台解决补货难题,包括数据采集、预测计划配置、销量和补货量预测,以及前端展示,助力品牌实现数字化管理和竞争优势提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不管是传统零售还是新零售,需求预测永远都是一个意义重大且极具挑战性的问题。

【场景】

传统采购人员依赖自身的“专家经验”执行补货操作,经常导致商品补货预测不够准确,出现经常性缺货、堆积现象。

【痛点】

如何提高预测计划商品的覆盖率?

如何在减少人力成本的同时大大提高补货的效率?

如何准确把握各商品的不同生命周期,从而对其进行精确的补货预测?

【解决方案】

针对上述需求,结合客户业务流程和数据状况,惟客数据研发了一套基于时序分析的智能补货系统,提供了一套数据中台解决方案,从根本上解决了“人治”带来的诸多困难和不确定性,使得完全通过数据驱动的需求预测和智能补货成为可能。

数据采集与预处理模块

基于电商系统的原始订单明细、发货和库存等维表数据,加工处理生成店铺和sku粒度的每日汇总信息(销量、出库量、库存量,平均售价等)。

预测计划配置模块

用户在智能补货系统中的“预测计划”页面选择“新增”预测计划,即可进入相应的配置页面,填入“预测计划名称”,勾选该计划涉及的“店铺名称”等信息完成配置,这样预测计划表中会生成一条关于新增预测计划的记录,该模块主要记录了该预测计划的ID、目标店铺ID列表、生效状态等信息。

数据采集与预处理模块

利用预测配置表,得到所有有效状态的预测计划对应的候选店铺及其sku的相关数据(销量、出库量、库存量,平均售价等),进一步生成每个预测计划的sku周期(比如10天为一个周期)汇总数据,最终得到各预测计划各sku的时序结构样本数据集。

销量预测模块

将预测计划的sku样本数据集和促销信息(时间和规模)输入到时序分解模型,并结合自定义移动平均算法,得到该预测计划中各sku在下一周期(比如未来10天)的销量、销售额等指标。

补货量预测模块

根据销量预测结果、当前库存情况和上一周期库存周转率等信息,计算得到各预测计划中各sku在下一周期的预测补货量。

前端展示模块

最后可以在展示模块,看到上述各阶段输出的相关预测指标,包括:销量、销售额、补货量、库存周转率等,用户能够更直观的掌握整体或各sku的相关指标信息,同时也能通过后验统计的库存周转率结果,对先验各预测指标的准确性进行验证。


通过数据中台技术架构搭建好智能补货系统,不断进行技术升级和算法优化,能够不断提升品牌的核心竞争力,进一步实现门店数字化管理,帮助品牌在未来的市场竞争中占据主导地位。

如果你还想了解更多内容,欢迎评论区留言或私信小编哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值