Stable Diffusion绘画 | ControlNet应用-IP-Adapter:一致性角色就这么简单

P-Adapter 更新了全新的模型—FaceID plus V2 版本,同时还支持 SDXL 模型。

FaceID plus V2 版本的优点:

  • 解决任务一致性
  • 一张图生成相似角色

图片

下载地址:https://huggingface.co/h94/IP-Adapter-FaceID/tree/main

其中,两个 Lora文件 放置在:SD安装目录\models\Lora

两个 bin文件 放置在:SD安装目录\extensions\sd-webui-controlnet\models

实操

开启一个 ControlNet,上传一张霉霉的图片(尽量选择脸部近景图片),控制类型选择「IP-Adapter」,预处理器选择「ip-adapter_face_id_plus」,模型选择「ip-adapter-faceid-plusv2_sd15」:

图片

提示词输入:1girl,同时将 faceid-plusv2_sd15 的 lora 添加到正向提示词中:

图片

因为是生成人物图片,适当开启 高分辨率修复(想保持与原图相似,降低重绘幅度至0.3)

图片

生成的图片如下:

图片

再来试试我钟意的歌手—古巨基的图片,

这次上传一张侧脸图片,使用真人模型:

图片

图片

生成图片如下:

图片

今天先分享到这里~

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

1.stable diffusion安装包 (全套教程文末领取哈)

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

<think>嗯,用户想了解如何开发基于Stable DiffusionControlNetAI绘画模型,包括基础版和进阶版的技术方案、代码示例以及优化方向。首先,我需要回顾一下Stable DiffusionControlNet的基本原理。Stable Diffusion是基于潜在扩散模型的生成模型,而ControlNet则是通过添加额外的控制条件来增强生成结果的结构一致性。 用户可能需要从基础开始,逐步深入。首先,基础部分应该包括环境配置、模型加载和基本的图像生成流程。然后进阶部分可以引入ControlNet,说明如何整合控制条件,比如边缘检测或姿态估计。代码示例需要简洁明了,可能使用HuggingFace的Diffusers库,因为这是常用的工具。 还要考虑用户可能遇到的常见问题,比如硬件要求,尤其是GPU内存的问题。优化方向可能包括模型量化、蒸馏技术或使用更高效的ControlNet变体。另外,用户可能对如何保持角色一致性感兴趣,这可以提到InstantID或IP-Adapter等技术。 需要确保引用正确,之前提供的引用[1]和[2]中提到了ControlNet的用法和InstantID的应用,这些可以作为参考,但用户的问题更偏向于开发步骤,所以可能需要调整引用的使用方式。例如,在讲解ControlNet时引用官方文档,而在角色一致性部分提到InstantID的实现方法。 另外,用户要求生成相关问题,这些问题应该围绕开发过程中可能遇到的挑战、性能优化和应用场景展开。例如,如何解决内存不足的问题,或者如何扩展模型支持多种控制条件。 最后,要确保回答结构清晰,分步骤说明,代码示例正确,并且优化方向切实可行。可能需要检查最新的Diffusers库版本是否支持提到的功能,以及代码示例是否需要调整参数或配置。</think>### 基于Stable Diffusion+ControlNetAI绘画模型开发指南 #### 一、基础版技术方案 1. **核心架构** - 基础框架:Stable Diffusion V1.5/V2.1 - 控制模块:ControlNet标准架构(含8个基础控制类型) - 交互层:CLIP文本编码器+条件融合模块 2. **开发步骤**: ```python # 环境安装(需16GB+ GPU) !pip install diffusers transformers accelerate controlnet_aux # 基础图像生成 from diffusers import StableDiffusionControlNetPipeline from controlnet_aux import CannyDetector detector = CannyDetector() controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet ) # 生成带边缘控制的图像 image = detector("input_image.png") prompt = "a cyberpunk cityscape" output = pipe(prompt=prompt, image=image).images[0] ``` 3. **关键参数优化**: ```python # 采样优化配置 pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() # 显存优化 ``` #### 二、进阶版技术方案 1. **增强架构**: -ControlNet联合控制(最多支持3个并行控制) - 动态权重融合模块 - 高分辨率修复模块(Hires.fix) 2. **角色一致性实现**(参考InstantID技术[^2]): ```python # 人脸特征提取与融合 from insightface.app import FaceAnalysis app = FaceAnalysis(name='buffalo_l') faces = app.get("reference.jpg") face_embed = faces[0].normed_embedding # 结合IP-Adapter pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-faceid-plusv2_sd15.bin") pipe.set_ip_adapter_scale(0.7) ``` 3. **混合控制示例**: ```python # 同时使用Canny边缘和深度图控制 controlnets = [ ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny"), ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-depth") ] pipe = StableDiffusionControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1", controlnet=controlnets ) # 多条件输入 conditions = [canny_image, depth_image] output = pipe(prompt=prompt, image=conditions).images[0] ``` #### 三、优化方向 1. **性能优化**: - 使用TensorRT加速推理(30-50%速度提升) - 8bit/4bit量化(减少显存占用) - 使用TemporalNet实现视频生成一致性 2. **质量提升**: - 集成Segment Anything模型实现精准区域控制 - 采用LCM-Lora加速采样(4-8步生成可用结果) - 应用Consistency Decoder提升细节质量 3. **扩展能力**: - 开发自定义ControlNet适配器 - 实现多模态控制(文本+图像+音频) - 构建LoRA库管理系统 ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值