强烈推荐四个免费comfyui工作流网站

今天,我要向大家介绍四个个免费的ComfyUI工作流网络,非常适合初学者使用。

ComfyUI是一个基于节点的稳定扩散AI绘图工具,它提供了一个用户友好的Web界面。它类似于Substance Designer,通过将扩散过程分解成多个节点,使得用户能够定制自己的工作流程,提高可重复性。虽然这种基于节点的工作流可能需要一些时间来学习,但ComfyUI的内部流程已经过优化,可以提高图片生成速度10%到25%,具体取决于显卡类型。

ComfyUI在处理大型图像时表现稳定,不会因为显存不足而崩溃,但可能会因为分块处理导致图像出现一些碎片。该工具支持基于图形、节点和流程图的界面设计,能够执行高级的稳定扩散管道

1.OPENart flow (https://openart.ai/home

首先,如果你会魔法,那就直接用这个OPENart flow

这个是个老牌的workflow网站,

进来直接点击这个comfyui workflows

可以看到这里都是免费的工作流。

img

2.Comfy Workflows(https://comfyworkflows.com

第二个Comfy Workflows,

一个你不需要魔法就能使用的网站,

这里都是免费的工作流

img

以上的两个国外网站看自己的情况选择就可以了,

资源都是很丰富的。

3.civital(https://civitai.com

img

第三个,civital ,虽然我们知道C站主要还是一个提供模型下载的网站,

但是里面也有一些很不错的AI工作流值得我们学习使用

我们可以再这个过滤器中勾选出workflow,

然后像下载模型一样就可以了。

4.esheep (https://www.esheep.com)

img

第四个,是咱们国内自己的工作流网站esheep

跟前面的差不多,但是不需要魔法速度也更快更适合我们中国宝宝。

提醒一下,如果电脑配置不高,

想用云端部署的玩comfyui的宝子们,

就用这个网站,里面的comfyui打开就能用,快去试试吧。https://www.suanyun.cn/console/pod/f2b2ba7aa9de42639150abc6872ebb4b

img

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

<think>嗯,用户现在问的是怎么在ComfyUI里做风格迁移的工作流。首先,我需要确认用户对ComfyUI的基础了解程度。可能他们已经有了一定的使用经验,但具体到风格迁移还不太清楚步骤。接下来,我需要回忆一下ComfyUI的结构,它作为基于节点的工作流工具,通常需要连接不同的处理器和模型。 风格迁移通常需要两个关键模型:内容图像和风格图像的处理。可能需要用到VAE编码器、CLIP文本编码器,以及像Stable Diffusion这样的生成模型。然后,风格迁移可能需要特定的节点,比如加载风格模型,调整强度参数,或者混合内容与风格特征的节点。 用户可能希望一个具体的步骤指南,所以需要分步骤说明,从安装必要插件开始,比如Impact Pack或者ControlNet相关的节点。然后构建工作流的各个部分,比如加载图像、预处理、应用风格模型,再到后处理和输出。 还要考虑用户可能遇到的问题,比如节点找不到,模型不兼容,或者风格强度不够。这时候需要给出常见问题解决的小贴士,比如检查插件安装,调整参数,或者使用不同的风格模型。 另外,用户可能想知道如何优化结果,比如使用不同的采样器或调整CFG值。可能需要推荐一些工作流模板或社区资源,帮助用户快速上手。 最后,确保语言通俗易懂,避免太多技术术语,但必要的术语需要解释清楚,比如VAE、CLIP的作用。结构要清晰,分步骤和模块,让用户能一步步跟着操作。同时,提醒用户实验的重要性,因为不同的参数组合会影响最终效果。</think>在ComfyUI中实现风格迁移可通过多种技术路径实现,以下是具体工作流搭建指南(以Stable Diffusion为基础): --- ### **一、基础环境准备** 1. 安装必要插件 - **ControlNet预处理器**:用于图像特征提取 - **IPAdapter**:实现图像风格注入 - **Impact Pack**:扩展图像处理节点 2. 准备模型文件 - 风格模型:如`artstyle_vanGogh_v3.safetensors` - 基础模型:推荐`SDXL 1.0`或`DreamShaper` - ControlNet模型:`t2iadapter_style_sd15v2.pth` --- ### **二、核心工作流架构** ```mermaid graph LR A[加载内容图像] --> B[VAE编码] C[加载风格图像] --> D[IPAdapter风格编码] B --> E[CLIP文本编码] D --> F[风格特征融合] E --> G[扩散模型处理] F --> G G --> H[VAE解码] H --> I[输出图像] ``` --- ### **三、详细操作步骤** #### **模块1:输入预处理** 1. **加载图像节点** - 使用`Load Image`节点分别载入内容图和风格图 - 建议分辨率:1024x1024(SDXL最佳尺寸) 2. **图像标准化** - 添加`Image Scale`节点统一尺寸 - 使用`KSampler`设置`denoise=0.7`保留细节 #### **模块2:风格特征提取** 1. **IPAdapter配置** ```python "IPAdapter": { "image": 风格图路径, "weight": 0.8, # 风格强度 "noise": 0.3 # 风格随机性 } ``` 2. **ControlNet应用** - 选择`t2i_adapter_style`预处理器 - 设置`strength=0.6`防止风格覆盖内容 #### **模块3:生成控制** 1. **提示词工程** - 正向提示词:`"in [style_name] style, high detail"` - 反向提示词:`"deformed, blurry, watermark"` 2. **采样器设置 ``` Sampler: DPM++ 2M Karras Steps: 25-30 CFG: 7-8 ``` #### **模块4:后处理优化 1. 添加`UltimateSDUpscale`节点 - 选择`4x_NMKD-Siax`放大算法 - 设置`scale=2`进行2倍超分 2. 使用`Detailer`节点 - 启用面部修复(适用于人像) - 设置`mask_blur=4`保持边缘自然 --- ### **四、参数调优建议** 1. **风格强度平衡** - `IPAdapter weight`>0.7:强烈风格化 - `ControlNet strength`<0.5:保留更多原图内容 2. **迭代控制技巧 - 使用`Latent Composite`分区域控制 - 对特定区域(如人脸)设置`mask`保护 --- ### **五、高级技巧** 1. **多风格混合** - 并联多个IPAdapter节点 - 通过`Blend`节点设置混合比例(如70%梵高+30%莫奈) 2. **视频风格迁移** - 配合`AnimateDiff`节点 - 设置`context_length=16`保持时序连贯 --- ### **六、常见问题解决** | 问题现象 | 解决方案 | |---------|----------| | 风格效果弱 | 提高IPAdapter weight至1.2(需开启`Allow weights >1`) | | 内容失真 | 降低ControlNet strength至0.4,增加KSampler steps至35 | | 显存不足 | 启用`--medvram`启动参数,使用`TAESD`轻量解码器 | --- **案例参考**:在SDXL 1.0基础上,使用`RealisticVision`模型+`Watercolor`风格适配器,配合0.65的ControlNet强度,可生成保留人脸特征的水彩风格肖像。 建议从GitHub获取工作流模板(搜索`ComfyUI-StyleTransfer-Workflow`),通过`Ctrl+Shift+O`直接导入JSON文件快速搭建。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值