c++调用pytorch libtorch(基础篇)

本文介绍了如何将PyTorch模型转换为Torch Script并使用C++的libtorch进行调用。从创建cpp文件、CMake构建,到解决库依赖和运行时结果不一致的问题,详细探讨了c++中libtorch的运用,包括可能出现的错误及解决办法。
摘要由CSDN通过智能技术生成

以GitHub [见参考文献1]为例,学习了c++调用pytorch API libtorch的实现过程。

1.将pytorch模型转换成Torch Script

官方tutorial https://pytorch.org/tutorials/advanced/cpp_export.html中给出了当前将pytorch模型转成Torch Script的两种方式(官方源码如下):

  • 1.Converting to Torch Script via Tracing
import torch
import torchvision

# An instance of your model.
model = torchvision
在ROS 2 (Robot Operating System) 中,要使用 C++ 调用 PyTorch 训练的模型,你需要做以下几个步骤: 1. **安装依赖**: - 安装 ROS 2:按照官方文档《安装指南》(https://docs.ros.org/en/foxy/Installation/index.html)完成基础设置。 - 安装 PyTorch:如果还没有,使用 `pip` 或者 ROS 内置的包管理工具如 `colcon` 来安装 PyTorch及其相关的Python库。 - 对于 C++ 接口,你可以考虑使用 PyTorchC++ API (`torch::jit::script`) 或者通过 Python C API 间接调用。 2. **将模型转换**: - 为了能在 C++ 中直接使用,需要将 PyTorch 模型导出为 TorchScript(`.pt` 或 `.pb` 文件)。可以使用 `torch.jit.save(model, 'model.pt')` 导出模型到 TorchScript。 3. **编写 C++ 代码**: - 使用 C++ 面向对象编程(如 C++11 或更高版本)或现代 C++(例如 C++17)编写代码。 - 使用 PyTorch C++ API (`torch/script.h`) 加载模型并执行推理。示例代码可能类似这样: ```cpp #include <torch/script.h> // 加载模型 torch::jit::script::Module module; try { std::ifstream model_file("model.pt", std::ios::binary); module = torch::jit::load(model_file); } catch (const c10::Error& e) { std::cerr << "Error loading the model: " << e.what() << std::endl; } // 创建输入数据 auto input_data = ...; // 根据模型需求创建适当的数据 // 运行模型 at::Tensor output = module.forward(input_data); ``` 4. **整合到ROS节点**: - 将上述 C++ 代码封装成一个 ROS Nodelet 或者直接作为服务/动作服务器的一部分。 - 调整数据格式,确保输入输出能够适应ROS的消息传递系统。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

外卖猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值