Inverse Optimization: Theory and Applications

一、介绍逆优化问题基本概念

传统优化问题是给定目标函数和约束,求最优决策。而逆优化问题是给定一组决策,求使这组决策成为最优决策的目标函数和/或约束条件。两类问题的思路正好相反。

传统优化问题由下述组成:

  1. 决策变量空间X
  2. 目标函数f(x),用于衡量不同决策的优劣
  3. 约束集g(x)≤0,限制决策选择范围
  4. 目标是求解min f(x),使其满足约束条件得到最优决策x*

而逆优化问题给出的是一个组决策{xi},目标是求解什么样的目标函数f'(x)和约束g'(x)≤0,可以使给出的决策集成为最优决策。

二、逆优化问题分类标准

  1. 前向问题结构分类
    视前向问题是否线性、整数规划、凸规划等进行分类,这将决定逆优化问题的表述和算法。

  2. 参数类型分类
    参数是否在目标函数参数或约束条件参数,一般分类讨论一个参数类型。

  3. 模型与数据匹配程度
    是否严格要求模型完全匹配观测数据,如果不匹配采用何种损失函数来衡量程度,从而将问题形式化。

基于这三个维度,文章给出经典逆优化和基于数据的逆优化两个分类。

三、经典逆优化问题算法

  1. 线性模型变形利用对偶理论及KKT条件将问题线性化成单层线性规划

  2. 整数规划模型采用切分算法逐步紧逼逆可行解空间

  3. 序贯决策模型用动态规划方法求解

  4. 网络流模型利用网络流对偶性条件解偶问题

  5. 凸规划模型利用对偶理论和KKT条件的凸 relax技巧

给出了不同模型下详细的问题变形和算法描述。

四、基于数据的逆优化问题形式

不再强求完全匹配,而是加入损失函数来衡量匹配程度的程详细。典型地,损失函数可以体现匹配程度,模型风险等成分。从而将问题整合成一个风险最小化问题来求解。

五、大规模问题学习方法

  1. 在线学习考虑数据顺序,以增量方式迭代学习

  2. 强化学习用于大规模动态决策问题

  3. 神经网络学习深入挖掘数据模式等方法

六、应用分类

  1. 设计型问题如交通控制、医疗激励等

  2. 估计型问题如能源需求学习、人性偏好提取等

  3. 混合型问题学习和设计兼备等

七、典型应用领域详解

给出了交通、物流、医疗、能源等各个领域的详细应用案例,阐述了逆优化在这些领域解决什么问题和取得什么成效。

基于Python的天气预测与可视化(完整源码+说明文档+数据),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MC数据局

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值