DeepSeek-R1 系列两个核心版本:R1-Zero 和 R1

DeepSeek-R1 系列确实包含两个核心版本:R1-ZeroR1,它们在训练方法、性能表现和应用场景上存在显著差异。以下是详细扩充:


1. R1-Zero:纯强化学习的突破性实验

训练方法
R1-Zero 完全摒弃监督微调(SFT),直接从基础模型(DeepSeek-V3-base)出发,通过纯强化学习(RL)训练推理能力。其核心算法 GRPO(组相对策略优化)通过动态调整奖励机制,引导模型自主探索解题策略。
奖励设计:仅依赖硬规则(如答案准确性、格式规范),避免人工标注数据干预。
参数规模:671B 参数的 MoE 架构,每个 token 激活 37B 参数,计算效率极高。

能力与局限
优势
◦ 在 AIME 2024 数学竞赛中达到 71% 准确率,涌现自我验证长思维链(CoT)推理等行为。
◦ 推理过程突破自然语言约束,在非语言空间进行高效计算(如连续思维链)。
局限
◦ 输出可读性差,语言一致性较低(需后续版本优化)。
◦ 幻觉率高达 14.3%,显著高于监督微调模型(如 DeepSeek-V3 的 3.9%)。


2. R1:面向应用的优化版本

训练改进
R1 在 R1-Zero 基础上引入两轮改进:

  1. 监督微调(SFT)冷启动:使用 800K 样本(60% 推理相关)提升语言可读性。
  2. 偏好对齐:加入安全性和用户体验奖励模型,减少有害输出。

性能对比

指标R1-ZeroR1
AIME 202471%79.8%
MATH-500-97.3%
幻觉率14.3%<5%

应用场景
企业级推理:百度搜索、快手等已接入 R1 满血版,处理复杂查询和代码生成。
低成本部署:API 价格仅为 OpenAI o1 的 3%(输入 tokens ¥1/百万)。


3. 技术架构共性

MoE 设计:两者均采用混合专家架构,动态路由任务至不同子网络(如 R1 的 671B 参数中仅激活 37B/Token)。
FP8 训练:首个开源 MoE 模型使用 FP8 混合精度,降低 40% 训练成本。


4. 行业影响

开源生态:R1 系列以 MIT 协议开源,推动国产 GPU 适配(如华为昇腾)。
推理革命:证明纯 RL 可驱动推理能力,挑战传统 SFT 依赖(如 GPT 系列)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MC数据局

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值