DW中的变形与位移

本文介绍了CSS中的变形方法,包括translate的三种用法:translate(X,Y)、translateX(X)和translateY(Y),以及matrix的使用,它通过2D变换矩阵实现元素定位。此外,还讨论了transform-origin属性,用于改变元素变形的中心点,以实现更灵活的布局效果。" 80015812,2300319,Kafka新消费者详解与实战,"['Kafka', '消费者', '消息队列', '数据处理']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

变形—位移
translate()函数可以将元素向指定的方向移动,类似于position中的relative。或以简单的理解为,使用translate()函数,可以把元素从原来的位置移动,而不影响在X、Y轴上任何web组件。
translate我们分为三种情况:
1. translate(X,Y)水平方向或垂直方向同时移动(也就是X轴和Y轴同时移动)
2. translateX(X)仅水平方向移动(X轴移动)
3. translateY(Y)仅垂直方向移动(Y轴移动)
用法:transform:translate(20x,40x);
效果:

变形—矩阵matrix()
matrix():是一个含六个值的(m11,m12, m21,m22,dx,dy)变换矩一个2D变换,相当于直接应用一个[m11,m12, m21,m22,dx,dy]变换矩阵。就是基于水平方向(X轴)和垂直方向(Y轴)重新定位元素,此属性值使用涉及到数学中的矩阵。
下列案例实现translate案例中的效果。
用法:transform:matrix(1,0,0,1,20,40);
效果:



变形—原点transform-origin
变形—原点 transform-origin:任何一个元素都有一个中心点,默认情况下,其中心点是居于元素X轴和Y轴的50%处。
在没有重置transform-origin改变元素原点位置的情况下,CSS变形进行的旋转、位移、缩放、扭曲等操作都是以元素自己中心位置进行变形。但是很多时候,我们可以通过transform-origin来对元素进行原点位置改变,使元素原点不在元素的中心位置,以达到需要的原点位置。
transform-origin取值和元素设置背景中的background-position取值类似,如下表所示:
关键字 百分数
top=top center 50% 0
left=left center 0 50%
bottom=bottom center 50% 100%
right=right center 100% 50%
center=center center 50% 50%
top left=right top 0 0
top right=right top 0 100%
bottom left=left bottom 100% 0
bottom right=right bottom 100% 100%

用法:transform-origin: left;
效果:


 

### 板结构一阶剪切模型结合伽辽金方法并考虑模态耦合的程序实现 对于板结构的一阶剪切变形理论(First-order Shear Deformation Theory, FSDT),其核心在于引入横向剪切效应来更精确地描述薄板和厚板的行为。当采用伽辽金法(Galerkin Method)求解此类问题时,通常会涉及偏微分方程组的离散化处理以及边界条件的应用。 以下是基于MATLAB的一个简单示例代码框架,用于演示如何利用伽辽金法对具有模态耦合特性的板结构进行数值计算: #### MATLAB 实现代码 ```matlab % 参数定义 E = 70e9; % 弹性模量 (Pa) nu = 0.3; % 泊松比 rho = 2700; % 密度 (kg/m^3) h = 0.01; % 厚度 (m) % 几何参数 a = 1; b = 1; % 长宽尺寸 (m) % 物理常数 Dxx = E*h^3 / (12*(1-nu^2)); kappa = 5/6; Gs = kappa*E/(2*(1+nu)); % 时间域划分 t_start = 0; t_end = 1; ne = 100; dt = (t_end - t_start)/ne; time_domain = linspace(t_start, t_end, ne); % 初始条件边界条件设置 w_init = @(x,y) sin(pi*x/a)*sin(pi*y/b); % 初位移场函数 dw_dt_init = @(x,y) zeros(size(x)); % 初速度场函数 % 构建基函数空间 N_modes = 4; % 考虑前 N_modes 个模态 phi_x = @(n,x) sqrt(2/a)*sin(n*pi*x/a); phi_y = @(m,y) sqrt(2/b)*sin(m*pi*y/b); % 组装质量矩阵 M 和刚度矩阵 K M = zeros(N_modes,N_modes); K = zeros(N_modes,N_modes); for n = 1:N_modes for m = 1:N_modes integrand_M = @(x,y) phi_x(n,x).*phi_x(m,x).*phi_y(n,y).*phi_y(m,y); M(n,m) = rho*h*integral2(integrand_M, 0, a, 0, b); integrand_K_w = @(x,y) ((pi*n/a)^2+(pi*m/b)^2)^2 * ... phi_x(n,x).*phi_x(m,x).*phi_y(n,y).*phi_y(m,y); integrand_K_shear = @(x,y) (pi*n/a)^2 + (pi*m/b)^2; K(n,m) = Dxx*integral2(integrand_K_w, 0, a, 0, b) + ... Gs*h*integral2(integrand_K_shear.*integrand_K_shear', 0, a, 0, b); end end % 动力学方程求解 A = M\(-K); [V,D] = eig(A); omega_n = diag(sqrt(D)); % 自然频率向量 disp('自然频率:'); disp(omega_n'); % 输出结果可视化 [X,Y] = meshgrid(linspace(0,a),linspace(0,b)); figure; surf(X,Y,V(:,1)'*phi_x(1,X).*phi_y(1,Y),'EdgeColor','none'); title('第一阶振动模式'); xlabel('X方向'); ylabel('Y方向'); zlabel('振幅'); colormap jet; colorbar; ``` 此代码实现了以下几个功能: 1. 定义了弹性力学中的物理参数,并设置了初始条件和边界条件。 2. 使用正弦型函数作为试函数,构建了有限维的空间近似形式[^5]。 3. 对质量和刚度矩阵进行了组装操作,其中包含了弯曲项和剪切项的影响。 4. 应用了特征值分解算法得到系统的固有频率及其对应的模态形状。 需要注意的是,在实际工程应用中可能还需要进一步细化网格密度、增加更多高阶模态或者改进积分精度等措施以提高模拟准确性。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值