hdu 1530 Maximum Clique(最大团模版)

16 篇文章 0 订阅

Maximum Clique

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2111    Accepted Submission(s): 1118


Problem Description
Given a graph G(V, E), a clique is a sub-graph g(v, e), so that for all vertex pairs v1, v2 in v, there exists an edge (v1, v2) in e. Maximum clique is the clique that has maximum number of vertex.
 

Input
Input contains multiple tests. For each test:

The first line has one integer n, the number of vertex. (1 < n <= 50)

The following n lines has n 0 or 1 each, indicating whether an edge exists between i (line number) and j (column number).

A test with n = 0 signals the end of input. This test should not be processed.
 

Output
One number for each test, the number of vertex in maximum clique.
 

Sample Input
  
  
5 0 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 0
 

Sample Output
  
  
4
题意:无向图的最大团问题。
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <queue>
#include <vector>
#include <cmath>
#include <cstdlib>
#define L(rt) (rt<<1)
#define R(rt) (rt<<1|1)
#define ll long long
#define eps 1e-6
using namespace std;

const int maxn=55;
const int INF=1000000000;
int n,cnt,bestn;
int G[maxn][maxn];
int vis[maxn];
void dfs(int u)
{
    if(u>n)
    {
        if(cnt>bestn) bestn=cnt;
        return;
    }
    bool ok=true;
    for(int i=0;i<u;i++)
    if(vis[i]&&!G[i][u])
    {
        ok=false;
        break;
    }
    if(ok)
    {
        vis[u]=true;
        cnt++;
        dfs(u+1);
        vis[u]=false;
        cnt--;
    }
    if(cnt+n-u>bestn) dfs(u+1);
}
int main()
{
    while(scanf("%d",&n),n)
    {
        for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
        scanf("%d",&G[i][j]);
        cnt=bestn=0;
        memset(vis,false,sizeof(vis));
        dfs(1);
        printf("%d\n",bestn);
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值