Maximum Clique
Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 2111 Accepted Submission(s): 1118
Problem Description
Given a graph G(V, E), a clique is a sub-graph g(v, e), so that for all vertex pairs v1, v2 in v, there exists an edge (v1, v2) in e. Maximum clique is the clique that has maximum number of vertex.
Input
Input contains multiple tests. For each test:
The first line has one integer n, the number of vertex. (1 < n <= 50)
The following n lines has n 0 or 1 each, indicating whether an edge exists between i (line number) and j (column number).
A test with n = 0 signals the end of input. This test should not be processed.
The first line has one integer n, the number of vertex. (1 < n <= 50)
The following n lines has n 0 or 1 each, indicating whether an edge exists between i (line number) and j (column number).
A test with n = 0 signals the end of input. This test should not be processed.
Output
One number for each test, the number of vertex in maximum clique.
Sample Input
5 0 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 0
Sample Output
4题意:无向图的最大团问题。AC代码:#include <iostream> #include <cstdio> #include <cstring> #include <string> #include <algorithm> #include <queue> #include <vector> #include <cmath> #include <cstdlib> #define L(rt) (rt<<1) #define R(rt) (rt<<1|1) #define ll long long #define eps 1e-6 using namespace std; const int maxn=55; const int INF=1000000000; int n,cnt,bestn; int G[maxn][maxn]; int vis[maxn]; void dfs(int u) { if(u>n) { if(cnt>bestn) bestn=cnt; return; } bool ok=true; for(int i=0;i<u;i++) if(vis[i]&&!G[i][u]) { ok=false; break; } if(ok) { vis[u]=true; cnt++; dfs(u+1); vis[u]=false; cnt--; } if(cnt+n-u>bestn) dfs(u+1); } int main() { while(scanf("%d",&n),n) { for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) scanf("%d",&G[i][j]); cnt=bestn=0; memset(vis,false,sizeof(vis)); dfs(1); printf("%d\n",bestn); } }