PCA主成分分析实例及3D可视化(鸢尾花数据集)

内容简介

收集了学习PCA的两个鸢尾花数据实例。

  • 第一个案例:详细复盘了PCA降维课程的内容,将四个特征简化到两个,画二维图展示结果;
  • 第二个案例:是sklearn上的例子,侧重于3维可视化,所以特征也是简化到3个。

原理简介:PCA降维,即将高维数据降到低维。比如原本特征值有4个,经过PCA方法后,选取前两个最重要的特征,将特征值降到2个。

例1: PCA降维流程

1. PCA详细流程

#工具包
import numpy as np
import pandas as pd

#导入数据
df = pd.read_csv('iris.data')
df.columns=['sepal_len', 'sepal_wid', 'petal_len', 'petal_wid', 'class']

#可视化分析-观察四个特征在不同类别的情况
from matplotlib import pyplot as plt
import math

label_dict = {1: 'Iris-Setosa',
              2: 'Iris-Versicolor',
              3: 'Iris-Virgnica'}

feature_dict = {0: 'sepal length [cm]',
                1: 'sepal width [cm]',
                2: 'petal length [cm]',
                3: 'petal width [cm]'}


plt.figure(figsize=(8, 6))
for cnt in range(4):
    plt.subplot(2, 2, cnt+1)
    for lab in ('Iris-setosa', 'Iris-versicolor', 'Iris-virginica'):
        plt.hist(X[y==lab, cnt],
                     label=lab,
                     bins=10,
                     alpha=0.3,)
    plt.xlabel(feature_dict[cnt])
    plt.legend(loc='upper right', fancybox=True, fontsize=8)

plt.tight_layout()
plt.show()

结果输出:
在这里插入图片描述

#切分数据集(这里更新了原课件代码)
X = df.values[:,0:4]
y = df.values[:,4]

#将特征数据标准化
from sklearn.preprocessing import StandardScaler
X_std = StandardScaler().fit_transform(X)
print (X_std) #打印所有结果

#计算协方差矩阵方法
##详细版本
mean_vec = np.mean(X_std, axis=0) #计算均值
cov_mat = (X_std - mean_vec).T.dot((X_std - mean_vec)) / (X_std.shape[0]-1) #协方差矩阵
print('Covariance matrix \n%s' %cov_mat) 
##简单版本
print('NumPy covariance matrix: \n%s' %np.cov(X_std.T))

上面两个版本计算出的的协方差矩阵结果都是一样的:
在这里插入图片描述
仔细观察,可以看到对角线上值约等于1,按对角线对称。

#计算特征值和特征向量
cov_mat = np.cov(X_std.T)
eig_vals, eig_vecs = np.linalg.eig(cov_mat) 
print('Eigenvectors \n%s' %eig_vecs)
print('\nEigenvalues \n%s' %eig_vals)

结果显示:
在这里插入图片描述
Eigenvalues [ 2.92442837 0.93215233 0.14946373 0.02098259]

  • 特征值大小,可以判断特征向量重要程度,特征值越大越重要。由结果可判断前两个特征重要程度较高
#将特征值和特征向量一一对应起来,第一行对应第一个,第二行对应第二个……
# Make a list of (eigenvalue, eigenvector) tuples
eig_pairs = [(np.abs(eig_vals[i]), eig_vecs[:,i]) for i in range(len(eig_vals))]
print (eig_pairs)
print ('----------')
# Sort the (eigenvalue, eigenvector) tuples from high to low
eig_pairs.sort(key=lambda x: x[0], reverse=True)

# Visually confirm that the list is correctly sorted by decreasing eigenvalues
print('Eigenvalues in descending order:')
for i in eig_pairs:
    print(i[0])

在这里插入图片描述

#将结果转变成百分数
tot = sum(eig_vals)
var_exp = [(i / tot)*100 for i in sorted(eig_vals, reverse=True)] #计算百分数
print (var_exp)
cum_var_exp = np.cumsum(var_exp,dtype=list)#计算累加值,比如第一个值1, 第二个值等于第1、2值相加,第三个值等于第1,2,3个值相加……
cum_var_exp

在这里插入图片描述

  • 第一二个特征占95%;第三个特征占99.4%,第四个特征小于1%;如果只要95,只选择前两个特征就足够了,下面画个图表更清晰地展现各个特征的占比情况。
#可视化显示,每个特征值占多少
plt.figure(figsize=(6, 4))

plt.bar(range(4), var_exp, alpha=0.5, align='center',
            label='individual explained variance')
plt.step(range(4), cum_var_exp, where='mid',
             label='cumulative explained variance')
plt.ylabel('Explained variance ratio')
plt.xlabel('Principal components')
plt.legend(loc='best')
plt.tight_layout()
plt.show()

在这里插入图片描述
从图中更直接地看到,前两个特征比较重要,后面两个特征占比很小,因此只需要取前面两个最重要的特征即可。

#提取前两个特征
matrix_w = np.hstack((eig_pairs[0][1].reshape(4,1),
                      eig_pairs[1][1].reshape(4,1)))

print('Matrix W:\n', matrix_w)

#计算
Y = X_std.dot(matrix_w)
Y
#可视化
#原来的图
plt.figure(figsize=(6, 4))
for lab, col in zip(('Iris-setosa', 'Iris-versicolor', 'Iris-virginica'),
                        ('blue', 'red', 'green')):
     plt.scatter(X[y==lab, 0],
                X[y==lab, 1],
                label=lab,
                c=col)
plt.xlabel('sepal_len')
plt.ylabel('sepal_wid')
plt.legend(loc='best')
plt.tight_layout()
plt.show()

#降维后的结果
plt.figure(figsize=(6, 4))
for lab, col in zip(('Iris-setosa', 'Iris-versicolor', 'Iris-virginica'),
                        ('blue', 'red', 'green')):
     plt.scatter(Y[y==lab, 0],
                Y[y==lab, 1],
                label=lab,
                c=col)
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.legend(loc='lower center')
plt.tight_layout()
plt.show()

结果输出:

  • 降维前二维图:红色和绿色混和在一起

在这里插入图片描述

  • 降维后结果:比较降维前后两个图,降维后分类更加聚集,每个颜色的小点比降维前更集中。
    在这里插入图片描述

2. 简略流程

这里直接使用sklearn.decomposition降维,更加简单方便。

#导入模块
import numpy as np
import matplotlib.pyplot as plt
from sklearn import decomposition
from sklearn import datasets

#导入数据
iris = datasets.load_iris()
X = iris.data
y = iris.target

#建模降维
pca = decomposition.PCA(n_components=2)  #降到二维 
pca.fit(X)
X = pca.transform(X)

#作图
plt.figure(figsize=(6, 4))

for name, label in [('Setosa',0), ('Versicolour',1), ('Virginica',2)]:
     plt.scatter(X[y==label, 0],
                X[y==label, 1],
                label=label,
                )
plt.xlabel('sepal_len')
plt.ylabel('sepal_wid')
plt.legend(loc='best')
plt.tight_layout()
plt.show()

结果输出:直接使用pca = decomposition.PCA(n_components=2)比之前逐步计算的效果更加好。其中n_components表示保留几个特征值。
在这里插入图片描述

例2:PCA example with Iris Data-set 3D可视化

1.建模降维度

#导入数据包
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

from sklearn import decomposition
from sklearn import datasets

# 导入函数
np.random.seed(5)

centers = [[1, 1], [-1, -1], [1, -1]]
iris = datasets.load_iris()
X = iris.data
y = iris.target

# PCA降维度
pca = decomposition.PCA(n_components=3)  #降到三维 
pca.fit(X)
X = pca.transform(X)

#打印X看看结果
X

结果输出:原本有4列数字,现在变成3列了。
在这里插入图片描述

2. 3D可视化

#3D图
fig = plt.figure(1, figsize=(4, 3))
plt.clf()
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)

plt.cla()

for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]:
    ax.text3D(X[y == label, 0].mean(),
              X[y == label, 1].mean() + 1.5,
              X[y == label, 2].mean(), name,
              horizontalalignment='center',
              bbox=dict(alpha=.5, edgecolor='w', facecolor='w'))
# Reorder the labels to have colors matching the cluster results
y = np.choose(y, [1, 2, 0]).astype(np.float)
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=y, cmap=plt.cm.nipy_spectral,
           edgecolor='k')

ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])

plt.show()

结果输出:
在这里插入图片描述

参考链接:
https://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_iris.html#sphx-glr-auto-examples-decomposition-plot-pca-iris-py

  • 16
    点赞
  • 131
    收藏
    觉得还不错? 一键收藏
  • 7
    评论
Python鸢尾花数据集可视化PCA主成分分析是一种常用的数据分析方法,可以帮助我们理解数据集的结构和分类情况。 首先,我们需要导入相关的Python库,如numpy、pandas和matplotlib。然后,我们可以使用pandas库中的read_csv方法读取鸢尾花数据集的CSV文件,并将数据存储为一个DataFrame对象。 接下来,我们可以使用sklearn库中的PCA类来进行主成分分析。首先,我们需要对数据进行标准化处理,即将数据的均值调整为0、方差调整为1。然后,我们可以创建一个PCA对象,并将数据传递给它的fit_transform方法进行主成分分析主成分分析会将数据转换为新的坐标系,其中每个维度代表数据在原坐标系中的一个特征。我们可以通过PCA对象的explained_variance_ratio_属性来获取每个主成分对应的方差比例,从而了解每个主成分的重要性。 为了可视化主成分分析的结果,我们可以创建一个二维散点图,其中x轴和y轴分别代表前两个主成分。我们可以使用Matplotlib中的scatter函数绘制不同类别的数据点,并使用不同颜色或形状进行区分。 此外,我们还可以通过绘制累积方差比例图来了解所选择的主成分数量是否足够解释原始数据的方差。该图可通过累积explained_variance_ratio_属性的值进行绘制。 总的来说,Python鸢尾花数据集可视化PCA主成分分析是一种有效的数据分析方法,可以帮助我们更好地理解数据集的结构和分类情况。它不仅可以帮助我们发现数据中隐藏的规律和趋势,还可以帮助我们对数据进行更好的预测和决策。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值