机器学习——性能度量_回归

回归预测误差的绝对值的平均值(mae),回归预测误差的平方的平均值(mse)

from sklearn.metrics import mean_absolute_error,mean_squared_error,r2_score

def test_mean_absolute_error():
    y_true=[1,1,1,1,1,2,2,2,0,0]
    y_pred=[0,0,0,1,1,1,0,0,0,0]
    
    print('Mean Absolute Error:',mean_absolute_error(y_true,y_pred))
test_mean_absolute_error()

def test_mean_squared_error():
    y_true=[1,1,1,1,1,2,2,2,0,0]
    y_pred=[0,0,0,1,1,1,0,0,0,0]
    
    print('Mean Absolute Error:',mean_absolute_error(y_true,y_pred))
    print('Mean Square Error:',mean_squared_error(y_true,y_pred))
test_mean_squared_error()

SSE=sum((y_actual-y_predict)^2)
同样的数据集情况下,SSE越小,误差越小,模型效果越好
缺点:SSE数值大小本身没有意义,随着样本的增加,sse必然增加
也就是说,不同的数据集的情况下,sse比较没有意义

r^2=1-(sum( (y_actual-Y_predict)^2)/sum((Y_actual-Y_mean)^2))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WJWFighting

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值