回归预测误差的绝对值的平均值(mae),回归预测误差的平方的平均值(mse)
from sklearn.metrics import mean_absolute_error,mean_squared_error,r2_score
def test_mean_absolute_error():
y_true=[1,1,1,1,1,2,2,2,0,0]
y_pred=[0,0,0,1,1,1,0,0,0,0]
print('Mean Absolute Error:',mean_absolute_error(y_true,y_pred))
test_mean_absolute_error()
def test_mean_squared_error():
y_true=[1,1,1,1,1,2,2,2,0,0]
y_pred=[0,0,0,1,1,1,0,0,0,0]
print('Mean Absolute Error:',mean_absolute_error(y_true,y_pred))
print('Mean Square Error:',mean_squared_error(y_true,y_pred))
test_mean_squared_error()
SSE=sum((y_actual-y_predict)^2)
同样的数据集情况下,SSE越小,误差越小,模型效果越好
缺点:SSE数值大小本身没有意义,随着样本的增加,sse必然增加
也就是说,不同的数据集的情况下,sse比较没有意义
r^2=1-(sum( (y_actual-Y_predict)^2)/sum((Y_actual-Y_mean)^2))