什么是均方误差(MSE)和均方根误差(RMSE)?
MSE 是均方误差(Mean Squared Error)的缩写,是一种常用的衡量回归模型预测精度的指标。它表示预测值与真实值之间差异的平方和的平均值,通常用于评估回归模型的性能。
RMSE 是均方根误差(Root Mean Squared Error)的缩写,是一种常用的衡量回归模型预测精度的指标。它表示预测值与真实值之间差异的平均大小,通常用于评估回归模型的性能。
其中,y_i 是第 i 个样本的真实值,y_p 是模型对第 i 个样本的预测值,n 是样本数量。
MSE,RMSE 越小,说明模型的预测精度越高。但是需要注意的是,MSE,RMSE 受到异常值的影响较大,因此在实际应用中需要结合其他指标(比如最大误差max_error)进行综合评估。